Main Article Content

Abstract

Crystal defects can be identified through the crystallographic characteristics of crystal orientation (lattice), microstrain, and texture. Identification of crystal defects on the atomic scale through crystallography is very important in analyzing the mechanism of material properties due to the influence of dislocations. The slip mechanism is analyzed to minimize coil spring failure. This study aims to analyze the causes of coil spring failure based on crystallography. XRD testing was carried out for analysis of residual stress, crystal orientation, and texture using MAUD 2.94 version software. Hardness testing was carried out on the surface of the coil spring with locations near and far from the fracture using micro Vickers. The macro fracture morphology was analyzed using a DSLR camera and the micro fracture morphology was analyzed using SEM. The XRD result shows that the coil spring material has a tensile residual stress value of "202.4 ± 15.9 MPa" with the resulting crystal orientation showing the hkl (100), (200), (211), (200) fields. The plane (200) has a texture characteristic that is oriented towards the Rolling direction along the spring axis. Texture oriented towards Rolling Direction can be shown with a maximum probability value of 1.191. A high probability will have an impact on the presence of material surface defects. Surface defects are indicated by the presence of pit corrosion on micro and macro fracture morphology observations. The pit corrosion defects that occur in the failed coil springs are the beginning of the formation of crack initiation and cause stress concentration. The stress concentration will increase with loading and cause crack propagation.

Keywords

Coil spring Crystal orientation Failure analysis Residual stress Texture

Article Details

References

  1. X. Q. Xing, J. N. Lu, J. W. Jian, L. J. Li, and Z. C. Luo, “Effect of environment-assisted cracking on the premature fatigue failure of high-strength valve springs,” Engineering Failure Analysis, vol. 126, p. 105466, 2021, doi: 10.1016/j.engfailanal.2021.105466.
  2. D. Fakhreddine, T. Mohamed, A. Said, D. Abderrazek, and H. Mohamed, “Finite element method for the stress analysis of isotropic cylindrical helical spring,” European Journal of Mechanics - A/Solids, vol. 24, no. 6, pp. 1068–1078, 2005, doi: 10.1016/j.euromechsol.2005.07.002.
  3. D. Knowles, Automotive suspension & steering systems. Clifton Park, NY: Thomson/Delmar Learning, 2007.
  4. P. M. Kaikkonen, M. C. Somani, I. H. Miettunen, D. A. Porter, S. T. Pallaspuro, and J. I. Kömi, “Constitutive flow behaviour of austenite at low temperatures and its influence on bainite transformation characteristics of ausformed medium-carbon steel,” Materials Science and Engineering: A, vol. 775, p. 138980, 2020, doi: 10.1016/j.msea.2020.138980.
  5. F. Li, Y. Zhang, H. Wei, and X. Lai, “Integrated problem of soaking pit heating and hot rolling scheduling in steel plants,” Computers & Operations Research, vol. 108, pp. 238–246, 2019, doi: 10.1016/j.cor.2019.04.016.
  6. H. Soyama, “Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening,” Journal of Materials Processing Technology, vol. 269, pp. 65–78, 2019, doi: 10.1016/j.jmatprotec.2019.01.030.
  7. H. Soyama and F. Takeo, “Comparison between cavitation peening and shot peening for extending the fatigue life of a duralumin plate with a hole,” Journal of Materials Processing Technology, vol. 227, pp. 80–87, 2016, doi: 10.1016/j.jmatprotec.2015.08.012.
  8. W. Cheng and I. Finnie, Residual Stress Measurement and the Slitting Method. New York: Springer, 2007.
  9. E. Kula and V. Weiss, Residual Stress and Stress Relaxation. New York: Springer, 1982.
  10. M. T. Hutchings, Introduction to the characterization of residual stress by neutron diffraction. CRC press, 2005.
  11. G. S. Schajer, Practical residual stress measurement methods. John Wiley & Sons, 2013.
  12. H. Soyama, T. Kikuchi, M. Nishikawa, and O. Takakuwa, “Introduction of compressive residual stress into stainless steel by employing a cavitating jet in air,” Surface and Coatings Technology, vol. 205, no. 10, pp. 3167–3174, 2011, doi: 10.1016/j.surfcoat.2010.11.031.
  13. A. Gupta, “Determination of residual stresses for helical compression spring through Debye-Scherrer ring method,” Materials Today: Proceedings, vol. 25, pp. 654–658, 2020, doi: 10.1016/j.matpr.2019.07.702.
  14. N. Aruchamy, T. Schenk, V. Kovacova, S. Glinsek, E. Defay, and T. Granzow, “Influence of tensile vs. compressive stress on fatigue of lead zirconate titanate thin films,” Journal of the European Ceramic Society, vol. 41, no. 14, pp. 6991–6999, 2021, doi: 10.1016/j.jeurceramsoc.2021.07.010.
  15. X. Chen, J. Bu, W. Zhou, and Q. Wang, “Effect of pre-cyclic damage and high temperature on residual tensile behavior of concrete,” Fire Safety Journal, vol. 108, p. 102853, 2019, doi: 10.1016/j.firesaf.2019.102853.
  16. S. Efendi, “Design and Simulation of Cracks in A Four-Cylinder Engine Crankshaft Using Finite Element Method,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 494, no. 1, p. 12004, doi: 10.1088/1757-899X/494/1/012004.
  17. H. Liu, S. Hamada, M. Koyama, and H. Noguchi, “Shallow crack effect on evaluation of residual tensile strength: Harmless and stable cracks in finite-sized structure made of ductile metals,” Theoretical and Applied Fracture Mechanics, vol. 109, p. 102734, 2020, doi: 10.1016/j.tafmec.2020.102734.
  18. S. A. Kumar and N. C. M. Babu, “Influence of induced residual stresses on fatigue performance of cold expanded fastener holes,” Materials Today: Proceedings, vol. 4, no. 2, pp. 2397–2402, 2017, doi: 10.1016/j.matpr.2017.02.089.
  19. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd in Pea. England: British Library Cataloguing, 2014.
  20. T. R. Gupta, S. S. Sidhu, J. K. Katiyar, and H. S. Payal, “Measurements of lattice strain in cold-rolled CR4 steel sheets using X-ray diffraction,” Materials Science and Engineering: B, vol. 264, p. 114930, 2021, doi: 10.1016/j.mseb.2020.114930.
  21. L. Del Llano-Vizcaya, C. Rubio-Gonzalez, G. Mesmacque, and A. Banderas-Hernandez, “Stress relief effect on fatigue and relaxation of compression springs,” Materials & design, vol. 28, no. 4, pp. 1130–1134, 2007, doi: 10.1016/j.matdes.2006.01.033.
  22. S. P. A. Gill, G. McColvin, and A. Strang, “Stress relaxation of nickel-based superalloy helical springs at high temperatures,” Materials Science and Engineering: A, vol. 613, pp. 117–129, 2014, doi: 10.1016/j.msea.2014.06.080.
  23. Y. Prawoto, S. Manville, T. Sakai, L. Lee, M. Tanaka, and T. Gnaupel-Herold, “Fracture mechanics approach to splitting in low spring index cold coiling process,” Journal of Failure Analysis and Prevention, vol. 19, pp. 738–751, 2019, doi: 10.1007/s11668-019-00653-7.
  24. D. Čakmak, Z. Tomičević, H. Wolf, Ž. Božić, D. Semenski, and I. Trapić, “Vibration fatigue study of the helical spring in the base-excited inerter-based isolation system,” Engineering Failure Analysis, vol. 103, pp. 44–56, 2019, doi: 10.1016/j.engfailanal.2019.04.064.
  25. Y. Li, J. Chen, J. Wang, X. Shi, and L. Chen, “Study on the effect of residual stresses on fatigue crack initiation in rails,” International Journal of Fatigue, vol. 139, p. 105750, 2020, doi: 10.1016/j.ijfatigue.2020.105750.
  26. V. Martín, J. Vázquez, C. Navarro, and J. Domínguez, “Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075-T651,” Tribology International, vol. 142, p. 106004, 2020, doi: 10.1016/j.triboint.2019.106004.
  27. T. Sigaeva, A. Kolesnikov, and L. Sudak, “Deformation of a closed hyperelastic helical spring,” International Journal of Non-Linear Mechanics, vol. 110, pp. 1–8, 2019, doi: 10.1016/j.ijnonlinmec.2019.01.005.
  28. M. Shamsujjoha, “Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels,” Materials Science and Engineering: A, vol. 776, p. 139039, 2020, doi: 10.1016/j.msea.2020.139039.
  29. A. N. de Moura, C. A. R. Neto, N. A. Castro, E. A. Vieira, and M. T. D. Orlando, “Microstructure, crystallographic texture and strain hardening behavior in hot tensile tests of UNS S32304 Lean Duplex stainless steel,” Journal of Materials Research and Technology, vol. 12, pp. 1065–1079, 2021, doi: 10.1016/j.jmrt.2021.03.023.
  30. ASTM International, Mannual book of ASTM standards. Section 13. West Conshohocken: ASTM International, 2010.
  31. Y. Waseda, E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. Springer Science & Business Media, 2011.
  32. S.-K. Kang, Y.-C. Kim, J.-W. Lee, D. Kwon, and J.-Y. Kim, “Effect of contact angle on contact morphology and Vickers hardness measurement in instrumented indentation testing,” International Journal of Mechanical Sciences, vol. 85, pp. 104–109, 2014, doi: 10.1016/j.ijmecsci.2014.05.002.
  33. P. Ganesh et al., “Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening,” Materials & Design (1980-2015), vol. 54, pp. 734–741, 2014, doi: 10.1016/j.matdes.2013.08.104.
  34. X. Wang, W. Zhang, J. Ni, T. Zhang, J. Gong, and M. A. Wahab, “Quantitative description between pre-fatigue damage and residual tensile properties of P92 steel,” Materials Science and Engineering: A, vol. 744, pp. 415–425, 2019, doi: 10.1016/j.msea.2018.12.029.
  35. G. Dini, R. Ueji, A. Najafizadeh, and S. M. Monir-Vaghefi, “Flow stress analysis of TWIP steel via the XRD measurement of dislocation density,” Materials Science and Engineering: A, vol. 527, no. 10–11, pp. 2759–2763, 2010, doi: 10.1016/j.msea.2010.01.033.
  36. Y. Zhang, H. Sun, H. Wang, X. Wang, X. An, and K. He, “Effects of Cr element on the crystal structure, microstructure, and mechanical properties of FeCrAl alloys,” Materials Science and Engineering: A, vol. 826, p. 142003, 2021, doi: 10.1016/j.msea.2021.142003.
  37. A. J. McEvily and J. Kasivitamnuay, Metal failures: mechanisms, analysis, prevention. John Wiley & Sons, 2013.
  38. M. S. J. Hashmi, Comprehensive materials processing. Newnes, 2014.
  39. G. E. Totten, Handbook of residual stress and deformation of steel. ASM international, 2002.
  40. Q. Lin, H. Liu, C. Zhu, and R. G. Parker, “Investigation on the effect of shot peening coverage on the surface integrity,” Applied Surface Science, vol. 489, pp. 66–72, 2019, doi: 10.1016/j.apsusc.2019.05.281.
  41. B. Podgornik, V. Leskovšek, M. Godec, and B. Senčič, “Microstructure refinement and its effect on properties of spring steel,” Materials Science and Engineering: A, vol. 599, pp. 81–86, 2014, doi: 10.1016/j.msea.2014.01.054.
  42. C. Ha et al., “Texture development and dislocation activities in Mg-Nd and Mg-Ca alloy sheets,” Materials Characterization, vol. 175, p. 111044, 2021, doi: 10.1016/j.matchar.2021.111044.
  43. R. P. S. Sisodia, M. Gáspár, M. Sepsi, and V. Mertinger, “Dataset on full width at half maximum of residual stress measurement of electron beam welded high strength structural steels (S960QL and S960M) by X-ray diffraction method,” Data in Brief, vol. 38, p. 107341, 2021, doi: 10.1016/j.dib.2021.107341.
  44. H. Liu et al., “Effect of stress shot peening on the residual stress field and microstructure of nanostructured Mg-8Gd-3Y alloy,” Journal of Materials Research and Technology, vol. 10, pp. 74–83, 2021, doi: 10.1016/j.jmrt.2020.11.085.
  45. Y. Harada and K. Mori, “Effect of processing temperature on warm shot peening of spring steel,” Journal of materials processing technology, vol. 162, pp. 498–503, 2005, doi: 10.1016/j.jmatprotec.2005.02.095.
  46. H.-H. Lai, H.-C. Cheng, C.-Y. Lee, C.-M. Lin, and W. Wu, “Effect of shot peening time on δ/γ residual stress profiles of AISI 304 weld,” Journal of Materials Processing Technology, vol. 284, p. 116747, 2020, doi: 10.1016/j.jmatprotec.2020.116747.
  47. M. G. Hajiabadi, M. Zamanian, and D. Souri, “Williamson-Hall analysis in evaluation of lattice strain and the density of lattice dislocation for nanometer scaled ZnSe and ZnSe: Cu particles,” Ceramics International, vol. 45, no. 11, pp. 14084–14089, 2019, doi: 10.1016/j.ceramint.2019.04.107.
  48. R. Li, Q. Tan, Y. Wang, Z. Yan, Z. Ma, and Y.-D. Wang, “Grain-orientation-dependent phase transformation kinetics in austenitic stainless steel under low-temperature uniaxial loading,” Materialia, vol. 15, p. 101030, 2021, doi: 10.1016/j.mtla.2021.101030.
  49. A. R. Bushroa, R. G. Rahbari, H. H. Masjuki, and M. R. Muhamad, “Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films,” Vacuum, vol. 86, no. 8, pp. 1107–1112, 2012, doi: 10.1016/j.vacuum.2011.10.011.
  50. M. Corrado and J.-F. Molinari, “Effects of residual stresses on the tensile fatigue behavior of concrete,” Cement and Concrete Research, vol. 89, pp. 206–219, 2016, doi: 10.1016/j.cemconres.2016.08.014.
  51. C. Acevedo and A. Nussbaumer, “Effect of tensile residual stresses on fatigue crack growth and S–N curves in tubular joints loaded in compression,” International Journal of Fatigue, vol. 36, no. 1, pp. 171–180, 2012, doi: 10.1016/j.ijfatigue.2011.07.013.
  52. M. R. Mitchell, Residual stress effects on fatigue and fracture testing and incorporation of results into design, no. 1497. ASTM International, 2007.
  53. S. R. Kumar et al., “Low cycle fatigue behavior of heat treated EN-47 spring steel,” Materials Today: Proceedings, vol. 22, pp. 2191–2198, 2020, doi: 10.1016/j.matpr.2020.03.299.
  54. D. Pastorcic, G. Vukelic, and Z. Bozic, “Coil spring failure and fatigue analysis,” Engineering Failure Analysis, vol. 99, pp. 310–318, 2019, doi: 10.1016/j.engfailanal.2019.02.017.
  55. A. Andoko et al., “Simulation of winglet with bend angles of 45, 60 and 90 degree,” in AIP Conference Proceedings, 2020, vol. 2262, no. 1, doi: 10.1063/5.0015757.
  56. A. Andoko et al., “The influence of crash initiator placement towards the application of energy crash box due to impact load,” in AIP Conference Proceedings, 2020, vol. 2262, no. 1, doi: 10.1063/5.0015761.
  57. T.-H. Nam, M.-S. Kwon, and J.-G. Kim, “Mechanism of corrosion fatigue cracking of automotive coil spring steel,” Metals and Materials International, vol. 21, pp. 1023–1030, 2015, doi: 10.1007/s12540-015-5326-5.
  58. G. Vukelic and M. Brcic, “Failure analysis of a motor vehicle coil spring,” Procedia Structural Integrity, vol. 2, pp. 2944–2950, 2016, doi: 10.1016/j.prostr.2016.06.368.
  59. L. Kosec et al., “Failure analysis of a motor-car coil spring,” Case Studies in Engineering Failure Analysis, vol. 4, pp. 100–103, 2015, doi: 10.1016/j.csefa.2013.12.004.
  60. F. Bergh, G. C. Silva, C. Silva, and P. Paiva, “Analysis of an automotive coil spring fracture,” Engineering failure analysis, vol. 129, p. 105679, 2021, doi: 10.1016/j.engfailanal.2021.105679.
  61. A. Andoko et al., “Failure analysis on the connecting rod by finite element method,” in AIP Conference Proceedings, 2020, vol. 2262, no. 1, doi: 10.1063/5.0015728.
  62. T. L. G. Andoko Andoko, Imam Muda Nauri, Paryono Paryono, Pradhana Kurniawan, Dhanang Reza Pradica, Raymond Philander Jeadi, Riduwan Prasetya, “Failure analysis of connecting rod,” AIP Publishing, vol. 2262, no. 050013 (2020), 2020, doi: https://doi.org/10.1063/5.0015762.
  63. A. Andoko and P. Puspitasari, “The Fatigue Crack Growth Rate Due to Single-Step Austempered Heat Treatment in Nodular Cast Iron,” in MATEC Web of Conferences, 2017, vol. 97, doi: 10.1051/matecconf/20179701028.
  64. J. Polak, Cyclic plasticity and low cycle fatigue life of metals. Elsevier Amsterdam, 1991.