Optimized deposition parameters for titanium nitride coatings: Enhancing mechanical properties of Al 6011 substrates via DC sputtering

Main Article Content

Margono Margono
https://orcid.org/0000-0002-1897-6867
Djarot Bangun Darmadi
https://orcid.org/0000-0001-7256-6650
Femiana Gapsari
https://orcid.org/0000-0003-3641-8372
Teguh Dwi Widodo
https://orcid.org/0000-0002-7005-7315
Muhammad Kozin
https://orcid.org/0000-0001-5568-3126
Prabowo Puranto
https://orcid.org/0009-0009-0497-683X
Muhammad Prisla Kamil
https://orcid.org/0000-0002-6121-7655
Diah Ayu Fitriani
https://orcid.org/0009-0009-4467-684X
Siti Amalina Azahra
https://orcid.org/0000-0003-1240-8807
Wiwien Andriyanti
https://orcid.org/0000-0002-3812-088X

Abstract

The growing demand for advanced coatings in industries such as aerospace and automotive necessitates materials with superior hardness, wear resistance, and thermal stability. Despite advancements in ternary coatings, research on binary Titanium Nitride (TiN) coatings remains limited, particularly in optimizing deposition parameters for lightweight aluminum substrates. This study aims to investigate the effects of sputtering parameters, specifically Ar:N₂ gas ratios and deposition durations, on the mechanical properties of TiN coatings on Al 6011 substrates. The optimized conditions (70Ar:30N₂ gas ratio and 60-minute deposition) yielded a 165% increase in surface hardness (88.92 HV) and a 54% reduction in wear rate compared to untreated samples. XRD and SEM analyses confirmed the dense microstructure and strong (200) phase orientation contributing to these enhancements. This research highlights a cost-effective and scalable approach to improving the performance of aluminum alloys, bridging the gap between fundamental studies and industrial applications.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] D. Yu et al., “Microstructure, mechanical and tribological properties of TaCN composite films by reactive magnetron sputtering,” Ceramics International, vol. 46, no. 13, pp. 20683–20694, 2020, doi: 10.1016/j.ceramint.2020.04.205.
[2] S. Junus et al., “Effect of current, time, ethanol concentration, and pH electrolyte on ZnO coated carbon fiber using electrochemical deposition method,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 105–113, 2023, doi: 10.31603/mesi.10493.
[3] A. D. Shieddieque, I. Rahayu, S. Hidayat, and J. A. Laksmono, “Recent Development in LiFePO4 Surface Modifications with Carbon Coating from Originated Metal-Organic Frameworks (MOFs) to Improve the Conductivity of Cathode for Lithium-Ion Batteries: A Review and Bibliometrics Analysis,” Automotive Experiences, vol. 6, no. 3, pp. 438–451, Nov. 2023, doi: 10.31603/ae.9524.
[4] S. N. S. Z. Abidin, W. H. Azmi, N. N. M. Zawawi, and A. I. Ramadhan, “Comprehensive Review of Nanoparticles Dispersion Technology for Automotive Surfaces,” Automotive Experiences, vol. 5, no. 3, pp. 304–327, Jun. 2022, doi: 10.31603/ae.6882.
[5] P. Visuttipitukul, T. Aizawa, and H. Kuwahara, “Advanced plasma nitriding for aluminum and aluminum alloys,” Materials Transactions, vol. 44, no. 12, pp. 2695–2700, 2003, doi: 10.2320/matertrans.44.2695.
[6] B. N. Pathak, A. Chandra, A. Kumar Mishra, A. Saxena, and B. Kandpal, “Study on wear behaviour of aluminium-based piston alloy using different coatings,” Materials Today: Proceedings, vol. 4, no. xxx, p. xxxx, Apr. 2023, doi: 10.1016/j.matpr.2023.04.018.
[7] F. Zhang, M. Yan, J. He, and F. Yin, “Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding,” Ceramics International, vol. 43, no. 14, pp. 10832–10839, 2017, doi: 10.1016/j.ceramint.2017.05.109.
[8] F. Zhang, M. Yan, C. Lu, and F. Yin, Plasma nitriding of 2024 Al alloy deposited with Ti Film: Effects of N2–H2 ratio on microstructure evolution and mechanical properties. Springer Singapore, 2018.
[9] E. T. Sari, N. Mufti, A. C. A. Nadhira, H. Wisodo, and M. Diantoro, “The Effect of Adding Aluminium on the Performance of ZnO NRs/PANi in Their Application as Photoelectrochemical Water Splitting,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 7, no. 2, p. 202, Nov. 2023, doi: 10.17977/um016v7i22023p202.
[10] F. Zhang, M. Yan, F. Yin, Y. Wang, Y. Zhang, and J. He, “Influence of plasma nitriding temperature on microstructures and mechanical properties of Ti-N/Ti-Al multilayer coatings on the surface of 5083 Al alloys,” Surface and Coatings Technology, vol. 335, no. November 2017, pp. 80–87, 2018, doi: 10.1016/j.surfcoat.2017.12.031.
[11] Q. Chen, A. Li, G. Wu, Z. Lu, G. Zhang, and G. Tian, “Structure vs chemistry : Tribological behavior of TiN fi lms in the nitrogen atmosphere,” Ceramics International, vol. 46, no. July, pp. 28053–28063, 2020, doi: 10.1016/j.ceramint.2020.07.300.
[12] Margono, M. Kozin, D. Setiadhi, H. K. Hassan, and R. Lakshminarasimhan, “Development of Titanium Nitride-Based Coatings for Wear Resistant Materials: A Review,” Mechanics Exploration and Material Innovation, vol. 1, no. 3, 2024, doi: 10.21776/ub.memi.2024.001.03.5.
[13] A. Ghailane et al., “Titanium nitride, TiXN(1−X), coatings deposited by HiPIMS for corrosion resistance and wear protection properties,” Applied Surface Science, vol. 574, no. October 2021, 2022, doi: 10.1016/j.apsusc.2021.151635.
[14] Ş. Danışman, D. Odabaş, and M. Teber, “The Effect of TiN, TiAlN, TiCN Thin Films Obtained by Reactive Magnetron Sputtering Method on the Wear Behavior of Ti6Al4V Alloy: A Comparative Study,” Coatings, vol. 12, no. 9, 2022, doi: 10.3390/coatings12091238.
[15] S. E. Shakib, A. Babakhani, and M. Kashefi Torbati, “Nanomechanical assessment of tribological behavior of TiN/TiCN multi-layer hard coatings deposited by physical vapor deposition,” Journal of Materials Research and Technology, vol. 25, pp. 1344–1354, 2023, doi: 10.1016/j.jmrt.2023.05.243.
[16] R. Tu et al., “Effect of Gradient Multilayer Design on Tribological Performance of TiN/TiSiN Coatings Prepared by Cathodic Arc Ion Plating,” Coatings, vol. 13, no. 5, 2023, doi: 10.3390/coatings13050836.
[17] Y. Zhang, Y. Yang, Y. Zhai, and P. Zhang, “Effect of negative substrate bias on the microstructure and mechanical properties of Ti-Si-N films deposited by a hybrid filtered cathodic arc and ion beam sputtering technique,” Applied Surface Science, vol. 258, no. 18, pp. 6897–6901, 2012, doi: 10.1016/j.apsusc.2012.03.127.
[18] A. R. Shugurov and M. S. Kazachenok, “Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings,” Surface & Coatings Technology, vol. September, no. 18, pp. 30954–X, 2018, doi: 10.1016/j.surfcoat.2018.09.001.
[19] P. Gu, X. Zhu, J. Li, H. Wu, and D. Yang, “Influence of substrate and Ar/N2 gas flow ratio on structural, optical and electrical properties of TiN thin films synthetized by DC magnetron sputtering,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 12, pp. 9893–9900, 2018, doi: 10.1007/s10854-018-9031-2.
[20] S. Das, S. Guha, R. Ghadai, and B. P. Swain, “A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere,” Materials Chemistry and Physics, vol. 258, no. September 2020, p. 123866, 2021, doi: 10.1016/j.matchemphys.2020.123866.
[21] W. Andriyanti et al., “Magnetic properties and microstructural of ion-implanted Gadolia doped Ceria-Barium monoferrite thin film deposited on Kapton for electromagnetic wave absorber application,” Journal of Alloys and Compounds, vol. 1005, no. August, p. 176207, 2024, doi: 10.1016/j.jallcom.2024.176207.
[22] A. K. Bard and Q. A. Abbas, “Optik Influence of cylindrical magnetron sputtering configurations on plasma characteristics,” Optik, vol. 272, no. December 2022, p. 170346, 2023, doi: 10.1016/j.ijleo.2022.170346.
[23] G. Rane, U. Krause, P. Dürrenfeld, H. Wang, and X. Zhang, “Significant texture and wear resistance improvement of TiN coatings using pulsed DC magnetron sputtering,” Applied Surface Science, vol. 23, no. June, p. 157709, 2023, doi: 10.1016/j.apsusc.2023.157709.
[24] P. J. Kelly and R. D. Arnell, “Magnetron sputtering: A review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, 2000, doi: 10.1016/S0042-207X(99)00189-X.
[25] A. Kavitha, R. Kannan, P. Sreedhara Reddy, and S. Rajashabala, “The effect of annealing on the structural, optical and electrical properties of Titanium Nitride (TiN) thin films prepared by DC magnetron sputtering with supported discharge,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 10, pp. 10427–10434, 2016, doi: 10.1007/s10854-016-5130-0.
[26] A. Kavitha, R. Kannan, K. R. Gunasekhar, and S. Rajashabala, “Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge,” Journal of Electronic Materials, vol. 46, no. 10, pp. 5773–5780, 2017, doi: 10.1007/s11664-017-5608-4.
[27] K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surface and Coatings Technology, vol. 204, no. 11, pp. 1661–1684, 2010, doi: 10.1016/j.surfcoat.2009.11.013.
[28] W. Suprapto, Zuliantoni, P. H. Setyarini, F. Gapsari, Sudjito, and Y. S. Irawan, “Corrosion Resistance Analysis of Al-Cu, Al-Zn and Al-Cu-Zn Alloys,” Key Engineering Materials, vol. 935, no. December, pp. 33–40, 2022, doi: 10.4028/p-04p5jx.
[29] T. Tjahjono, T. W. B. Riyadi, B. W. Febriantoko, Margono, Suprapto, and T. Sujitno, “Hardness optimization based on nitriding time and gas pressure in the plasma nitriding of aluminium alloys,” Materials Science Forum, vol. 961 MSF, pp. 112–117, 2019, doi: 10.4028/www.scientific.net/MSF.961.112.
[30] T. W. B. Riyadi, T. Tjahjono, Sarjito, Margono, Suprapto, and T. Sujitno, “Wear and Corrosion Resistance of Aluminium Nitride Produced by DC Glow Discharge,” Advances Sciences Letters, vol. 53, no. 9, pp. 1689–1699, 2018, doi: 10.1166/asl.2018.12080.
[31] H. Gao, B. Zhang, P. Yang, Z. Wang, N. Zhou, and D. Wei, “Mechanical and tribological properties related on the texture of TiN films regulated via HiPIMS,” Chemical Physics Letters, vol. 829, no. March, p. 140738, 2023, doi: 10.1016/j.cplett.2023.140738.
[32] Y. D. B. A. Puraditya, D. D. Mahendra, and P. H. Setyarini, “Characteristics of Bio-ceramic Coating on Corrosion Rate of Stainless Steel 316L and Titanium (Ti-6Al-4V),” Mechanics Exploration and Material Innovation, vol. 1, no. 1, pp. 20–26, Jan. 2024, doi: 10.21776/ub.memi.2024.001.01.3.
[33] Zuliantoni and D. F. Smaradhana, “The Manufacturing Process and Corrosion Properties of Magnesium Matrix Composites: A Review,” Mechanics Exploration and Material Innovation, vol. 1, no. 1, pp. 7–19, 2024, doi: 10.21776/ub.memi.2024.001.01.2.
[34] A. Ayatilhaq, P. H. Setyarini, Margono, and D. Setiadhi, “The Effect of Mangan on Hardness and Corrosion Rate of Biodegradable Implants of Zn-Mn Alloy,” Mechanics Exploration and Material Innovation, vol. 1, no. 1, pp. 1–6, 2024, doi: 10.21776/ub.memi.2024.001.01.1.
[35] A. Barasa, A. Wahjudi, R. R. Pratama, and W. Kriswardhana, “Adding ZnO to Cellulose/ZnO Nanocomposites Coated A36 Steel Increases The Corrosion Rate,” Mechanics Exploration and Material Innovation, vol. 1, no. 3, pp. 82–87, 2024, doi: 10.21776/ub.memi.2024.001.03.2.
[36] N. P. Parahdiba, H. Salafy, A. Marizki, and A. N. Camila, “Effect of Heat Treatment Variation on Grain Boundary Corrosion of Austenitic Stainless Steel,” Mechanics Exploration and Material Innovation, vol. 1, no. 3, pp. 94–101, 2024, doi: 10.21776/ub.memi.2024.001.03.4.
[37] J. Musil, P. Karvánková, and J. Kasl, “Hard and superhard Zr-Ni-N nanocomposite films,” Surface and Coatings Technology, vol. 139, no. 1, pp. 101–109, 2001, doi: 10.1016/S0257-8972(01)00989-6.
[38] V. M. Vishnyakov et al., “Ion assisted deposition of titanium chromium nitride,” Thin Solid Films, vol. 497, no. 1–2, pp. 189–195, 2006, doi: 10.1016/j.tsf.2005.05.005.
[39] J. Yang, M. Peng, J. Liao, Y. Yang, and N. Liu, “Effect of N2 gas injection parameters on structure and properties of TiN thin films prepared by reactive gas pulse sputtering,” Surface and Coatings Technology, vol. 311, pp. 391–397, 2017, doi: 10.1016/j.surfcoat.2017.01.016.
[40] S. Das, S. Guha, R. Ghadai, A. Sharma, and S. Chatterjee, “Morphological, Mechanical Property Analysis and Comparative Study over Structural Properties of CVD TiN Film Grown under Different Substrate Temperature in Nitrogen Gas Atmosphere,” Silicon, vol. 14, no. 1, pp. 183–199, 2022, doi: 10.1007/s12633-020-00807-5.
[41] H. Juliano et al., “HA / ZrO _ 2 Coating on CoCr Alloy Using Flame Thermal Spray HA / ZrO 2 Coating on CoCr Alloy Using Flame Thermal Spray,” Evergreen, vol. 9, no. 2, pp. 254–261, 2022.
[42] N. Selvakumar and R. Malkiya Rasalin Prince, “Microstructure, surface topography and sliding wear behaviour of titanium based coating on AISI 1040 steel by magnetron sputtering,” Archives of Civil and Mechanical Engineering, vol. 17, no. 2, pp. 281–292, 2017, doi: 10.1016/j.acme.2016.10.005.
[43] Z. Yan, D. feng , Dong jiang, Xiaoming gao, Ming hu, Desheng wang, Yanlong fu, Jiayi sun, and L. Weng, “Friction and wear behavior of TiN films against ceramic and steel balls,” Tribology International, vol. 124, pp. 61–69, 2018, doi: 10.1016/j.triboint.2018.03.031.
[44] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science & Technology A, vol. 21, no. 5, pp. S117–S128, Sep. 2003, doi: 10.1116/1.1601610.
[45] S. K. Mishra, R. Kumar, Soni, M. Sreemany, and L. C. Pathak, “Ultrathin to Nano Thickness TiN Coatings: Processing, Structural, Mechanical Behavior,” Journal of Materials Engineering and Performance, vol. 24, no. 12, pp. 5013–5021, 2015, doi: 10.1007/s11665-015-1754-0.
[46] X. HONG, K. FENG, Y. fa TAN, X. long WANG, and H. TAN, “Effects of process parameters on microstructure and wear resistance of TiN coatings deposited on TC11 titanium alloy by electrospark deposition,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 27, no. 8, pp. 1767–1776, 2017, doi: 10.1016/S1003-6326(17)60199-7.
[47] C. C. Liu and J. L. Huang, “Influence of TiN particles on the wear behavior of silicon nitride-based composites,” Journal of Materials Research, vol. 19, no. 2, pp. 542–549, 2004, doi: 10.1557/jmr.2004.19.2.542.
[48] E. Milanese and J. F. Molinari, “A mechanistic model for the growth of cylindrical debris particles in the presence of adhesion,” International Journal of Solids and Structures, vol. 203, pp. 1–16, 2020, doi: 10.1016/j.ijsolstr.2020.06.040.
[49] J. Zhang, Q. Xue, S.-X. Li, and Z. Qin, “Microstructure, corrosion and tribological properties of Ti(CN) multilayer coatings on 35CrMo steel by CVD,” Rare Metals, vol. 39, no. 11, pp. 1314–1320, 2020, doi: 10.1007/s12598-014-0305-4.
[50] M. Zhu, S. Achache, P. Boulet, A. Virfeu, J. F. Pierson, and F. Sanchette, “Effects of deposition parameters on the microstructure and mechanical properties of Ti(C,N) produced by moderate temperature chemical vapor deposition (MT-CVD) on cemented carbides,” Vacuum, vol. 195, no. 10, p. 110650, 2022, doi: 10.1016/j.vacuum.2021.110650.
[51] M. Sahul et al., “The influence of multilayer architecture on the structure and mechanical properties of WNx/TiSiN coatings in comparison with WNxand TiSiN single layers,” Journal of Physics: Conference Series, vol. 2413, no. 1, 2022, doi: 10.1088/1742-6596/2413/1/012013.
[52] A. Claver et al., “Improved Adhesion and Tribological Properties of AlTiN-TiSiN Coatings Deposited by DCMS and HiPIMS on Nitrided Tool Steels,” Coatings, vol. 11, no. 10, 2021, doi: 10.3390/coatings11101175.
[53] D. Özkan et al., “Effects of ceramic-based CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN+TiSiN PVD coatings,” Ceramics International, vol. 47, no. 14, pp. 20077–20089, 2021, doi: 10.1016/j.ceramint.2021.04.015.
[54] W. Andriyanti, T. Sujitno, Suprapto, and M. L. Rasyidi, “Titanium nitride (TiN) deposition on the surface of Al-5083 using DC sputtering method to improve its hardness and wear resistance,” AIP Conference Proceedings, vol. 2381, no. November, 2021, doi: 10.1063/5.0066548.
[55] D. D. Phuong, V. D. Luong, P. N. Minh, H. J. Park, and K. Il Moon, “Microstructure, mechanical and tribological behavior of the TiAlVN coatings,” Acta Metallurgica Slovaca, vol. 24, no. 4, pp. 266–272, 2018, doi: 10.12776/ams.v24i4.1187.

Most read articles by the same author(s)