Recent Progress on the Production of Aluminum Oxide (Al2O3) Nanoparticles: A Review

Main Article Content

Adzra Zahra Ziva
Yuni Kartika Suryana
Yusrianti Sabrina Kurniadianti
Asep Bayu Dani Nandiyanto
https://orcid.org/0000-0002-9753-1267
Tedi Kurniawan
https://orcid.org/0000-0002-4173-695X

Abstract

This study aims at discussing several methods to produce aluminum oxide (Al2O3) synthesis methods along with the advantages and disadvantages of each method used. In general, several methods are available: (1) precipitation, (2) combustion, (3) sol-gel, (4) wet chemical, (5) synthesis in supercritical water conditions, (6) microwave, (7) mechanochemical, and (8) hydrolysis, and the most efficient method for synthesizing Al2O3 is precipitation because it is facile and the simplest method (compared to other methods), can be proceeded using inexpensive raw materials, produces less pollution, and has several advantages: high purity product, high thermal stability, nearly homogeneous nanoparticle in size, and control desired particle size. The results of the study help to provide comparisons in producing various Al2O3 synthesis methods.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] P. A. Prashanth et al., “Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles,” Journal Asian Ceramic Society, vol. 3, no. 3, pp. 345–351, 2015, doi: 10.1016/j.jascer.2015.07.001.
[2] M. S. Y. Parast and A. Morsali, “Synthesis and characterization of porous Al(III) metal-organic framework nanoparticles as a new precursor for preparation of Al2O3 Nanoparticles,” Inorganic Chemistry Community, vol. 14, no. 5, pp. 645–648, 2011, doi: 10.1016/j.inoche.2011.01.040.
[3] L. Zhu et al., “Low temperature synthesis of polyhedral α-Al2O3 nanoparticles through two different modes of planetary ball milling,” Ceramic International, vol. 46, no. 18, pp. 28414–28421, 2020, doi: 10.1016/j.ceramint.2020.07.346.
[4] Simón Y. Reyes López, Juan Serrato Rodríguez, Satoshi Sugita Sueyoshi, “Low-temperature formation of alpha alumina powders via metal organic synthesis,” The AZo Journal of Materials Online, vol. 2, no. April, pp. 1–9, 2006.
[5] M. T. Hernández and M. González, “Synthesis of resins by microwave and infrared heating as precursors of alpha-alumina. Comparison of the results,” Key Engineering Materials, vol. 206–213, no. I, pp. 71–74, 2001, doi: 10.4028/www.scientific.net/kem.206-213.71.

[6] K. Laishram, R. Mann, and N. Malhan, “A novel microwave combustion approach for single step synthesis of α-Al2O3 nanopowders,” Ceramic International, vol. 38, no. 2, pp. 1703–1706, 2012, doi: 10.1016/j.ceramint.2011.08.044.
[7] H. Gao, M. Zhang, H. Yang, Z. Li, Y. Li, and L. Chen, “A novel green synthesis of γ -Al2O3 nanoparticles using soluble starch,” Modern Physics Letter. B, vol. 33, no. 16, pp. 1–9, 2019, doi: 10.1142/S0217984919501823.
[8] G. W. Lee, “Phase Transition Characteristics of with Heat Treatment,” International Journal Chemical Nuclear Metallurgy Materials, vol. 7, no. 9, pp. 699–702, 2013.
[9] A. Rajaeiyan and M. M. Bagheri-Mohagheghi, “Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles,” Advance in Manufacturing, vol. 1, no. 2, pp. 176–182, 2013, doi: 10.1007/s40436-013-0018-1.
[10] L. Song, Y. Dong, Q. Shao, and J. Jiang, “Synthesis of monodisperse α‐ Al2O3 nanoparticles by a salt microemulsion method,” Micro Nano Letter, vol. 13, no. 8, pp. 1071–1074, 2018, doi: 10.1049/mnl.2018.0078.
[11] S. N. S. Mohamad, N. Mahmed, D. S. Che Halin, K. Abdul Razak, M. N. Norizan, and I. S. Mohamad, “Synthesis of alumina nanoparticles by sol-gel method and their applications in the removal of copper ions (Cu2+) from the solution,” IOP Conference Series: Material Science Engineering, vol. 701, no. 1, 2019, doi: 10.1088/1757-899X/701/1/012034.
[12] A. A. Mohammed, Z. T. Khodair, and A. A. Khadom, “Preparation and investigation of the structural properties of α-Al2O3nanoparticles using the sol-gel method,” Chemical Data Collection, vol. 29, p. 100531, 2020, doi: 10.1016/j.cdc.2020.100531.
[13] H. S. Potdar, K. W. Jun, J. W. Bae, S. M. Kim, and Y. J. Lee, “Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route,” Applied Catalysis A: General, vol. 321, no. 2, pp. 109–116, 2007, doi: 10.1016/j.apcata.2007.01.055.
[14] S. Wang, X. Li, S. Wang, Y. Li, and Y. Zhai, “Synthesis of γ-alumina via precipitation in ethanol,” Material Letter, vol. 62, no. 20, pp. 3552–3554, 2008, doi: 10.1016/j.matlet.2008.03.048.
[15] X. Su, S. Chen, and Z. Zhou, “Synthesis and characterization of monodisperse porous α-Al2O3nanoparticles,” Applied Surface Science, vol. 258, no. 15, pp. 5712–5715, 2012, doi: 10.1016/j.apsusc.2012.02.067.
[16] S. A. Hassanzadeh-Tabrizi and E. Taheri-Nassaj, “Economical synthesis of Al2O3 nanopowder using a precipitation method,” Material Letter vol. 63, no. 27, pp. 2274–2276, 2009, doi: 10.1016/j.matlet.2009.07.035.
[17] A. S. Jbara, Z. Othaman, A. A. Ati, and M. A. Saeed, “Characterization of γ-Al2O3 nanopowders synthesized by Co-precipitation method,” Materials Chemistry and Physics, vol. 188, pp. 24–29, 2017, doi: 10.1016/j.matchemphys.2016.12.015.
[18] Y. S. Wu, J. Ma, F. Hu, and M. C. Li, “Synthesis and characterization of mesoporous alumina via a reverse precipitation method,” Journal of Materials Science & Technology, vol. 28, no. 6, pp. 572–576, 2012, doi: 10.1016/S1005-0302(12)60100-5.
[19] Wang, J., Zhao, D., Zhou, G., Zhang, C., Zhang, P., & Hou, X. (2020). Synthesis of nano-sized γ-Al2O3 with controllable size by simple homogeneous precipitation method. Materials Letters, 128476. doi:10.1016/j.matlet.2020.128476
[20] W. Wang, K. Zhang, Y. Yang, H. Liu, Z. Qiao, and H. Luo, “Synthesis of mesoporous Al2O3 with large surface area and large pore diameter by improved precipitation method,” Microporous Mesoporous Mater., vol. 193, pp. 47–53, 2014, doi: 10.1016/j.micromeso.2014.03.008.
[21] J. Kong, B. Chao, T. Wang, and Y. Yan, “Preparation of ultrafine spherical AlOOH and Al2O3 powders by aqueous precipitation method with mixed surfactants,” Powder Technology, vol. 229, pp. 7–16, 2012, doi: 10.1016/j.powtec.2012.05.024.
[22] K. M. Parida, A. C. Pradhan, J. Das, and N. Sahu, “Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method,” Materials Chemistry and Physics., vol. 113, no. 1, pp. 244–248, 2009, doi: 10.1016/j.matchemphys.2008.07.076.
[23] J. Hong Yi, Y. Yi Sun, J. Feng Gao, and C. Yan Xu, “Synthesis of crystalline γ-Al2O3 with high purity,” Trans. Nonferrous Metal Society China (English Ed.), vol. 19, no. 5, pp. 1237–1242, 2009, doi: 10.1016/S1003-6326(08)60435-5.
[24] H. Li, H. Lu, S. Wang, J. Jia, H. Sun, and X. Hu, “Preparation of a nano-sized α-Al2O3 powder from a supersaturated sodium aluminate solution,” Ceramics International, vol. 35, no. 2, pp. 901–904, 2009, doi: 10.1016/j.ceramint.2008.01.030.
[25] S. Ali, Y. Abbas, Z. Zuhra, and I. S. Butler, “Synthesis of γ-alumina (Al2O3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater,” Nanoscale Advance, vol. 1, no. 1, pp. 213–218, 2019, doi: 10.1039/c8na00014j.
[26] M. Farahmandjou and N. Golabiyan, “Synthesis and characterisation of Al2O3 nanoparticles as catalyst prepared by polymer co-precipitation method,” Material Engineering Research, vol. 1, no. 2, pp. 40–44, 2019, doi: 10.25082/mer.2019.02.002.
[27] V. V. Karasev et al., “Formation of charged aggregates of Al2O3 nanoparticles by combustion of aluminum droplets in air,” Combustion and Flame, vol. 138, no. 1–2, pp. 40–54, Jul. 2004, doi: 10.1016/j.combustflame.2004.04.001.
[28] D. G. Syarif, M. Yamin, and Y. I. Pratiwi, “Self combustion synthesis of Al2O3 nanoparticles from bauxite utilizing sugar as fuel for nanofluids with enhanced CHF,” Journal of Physics: Conference Series, vol. 1153, no. 1, 2019, doi: 10.1088/1742-6596/1153/1/012068.
[29] F. B. Afruz and M. J. Tafreshi, “Synthesis of γ-Al2O3 nano particles by different combustion modes using ammonium carbonate,” Indian Journal Pure and Applied Physical, vol. 52, no. 6, pp. 378–385, 2014.
[30] Z. Hosseini, M. Taghizadeh, and F. Yaripour, “Synthesis of nanocrystalline γ-Al2O3 by sol-gel and precipitation methods for methanol dehydration to dimethyl ether,” Journal of Natural Gas Chemistry, vol. 20, no. 2, pp. 128–134, 2011, doi: 10.1016/S1003-9953(10)60172-7.
[31] J. Li, Y. Pan, C. Xiang, Q. Ge, and J. Guo, “Low temperature synthesis of ultrafine α-Al₂O₃ powder by a simple aqueous sol-gel process,” Ceramics International, vol. 32, no. 5, pp. 587–591, 2006, doi: 10.1016/j.ceramint.2005.04.015.
[32] S. M. Kim, Y. J. Lee, K. W. Jun, J. Y. Park, and H. S. Potdar, “Synthesis of thermo-stable high surface area alumina powder from sol-gel derived boehmite,” Materials Chemistry and Physics, vol. 104, no. 1, pp. 56–61, 2007, doi: 10.1016/j.matchemphys.2007.02.044.
[33] M. Shojaie-Bahaabad and E. Taheri-Nassaj, “Economical synthesis of nano alumina powder using an aqueous sol-gel method,” Materials Letters, vol. 62, no. 19, pp. 3364–3366, 2008, doi: 10.1016/j.matlet.2008.03.012.
[34] S. Dubey, A. Singh, B. Nim, and I. B. Singh, “Optimization of molar concentration of AlCl3 salt in the sol–gel synthesis of nanoparticles of gamma alumina and their application in the removal of fluoride of water,” Journal of Sol-Gel Science and Technology, vol. 82, no. 2, pp. 468–477, 2017, doi: 10.1007/s10971-017-4336-9.
[35] P. Nayar, S. Waghmare, P. Singh, M. Najar, S. Puttewar, and A. Agnihotri, “Comparative study of phase transformation of Al2O3 nanoparticles prepared by chemical precipitation and sol-gel auto combustion methods,” Material Today Proceedings, vol. 26, no. xxxx, pp. 122–125, 2018, doi: 10.1016/j.matpr.2019.05.450.
[36] O. M. Rosadi, “Al2O3 nanoparticles synthesis using sol-gel process to improve cooling engine performance,” eProceedings of Engineering, vol. 3, no. 1, pp. 622–627, 2016, [Online]. Available: https://openlibrary.telkomuniversity.ac.id/home/catalog/id/114808/slug/al2o3-nanoparticles-synthesis-using-sol-gel-process-to-improve-cooling-engine-performance.html (accessed July 05, 2021).

[37] V. Pandurang Dhawale, “Synthesis and characterization of aluminium oxide (Al2O3) nanoparticles and its application in azodye decolourisation,” International Journal Environmental Chemistry, vol. 2, no. 1, p. 10, 2018, doi: 10.11648/j.ijec.20180201.13.
[38] H. Lu, H. Sun, A. Mao, H. Yang, H. Wang, and X. Hu, “Preparation of plate-like nano α-Al2O3 using nano-aluminum seeds by wet-chemical methods,” Material Science Engineering A, vol. 406, no. 1–2, pp. 19–23, 2005, doi: 10.1016/j.msea.2005.04.047.
[39] R. López-Juárez, N. Razo-Perez, T. Pérez-Juache, O. Hernandez-Cristobal, and S. Y. Reyes-López, “Synthesis of α-Al2O3 from aluminum cans by wet-chemical methods,” Results in Physics, vol. 11, no. November, pp. 1075–1079, 2018, doi: 10.1016/j.rinp.2018.11.037.
[40] H. X. Lu, J. Hu, C. P. Chen, H. W. Sun, X. Hu, and D. L. Yang, “Characterization of Al2O3-Al nano-composite powder prepared by a wet chemical method,” Ceramics International, vol. 31, no. 3, pp. 481–485, 2005, doi: 10.1016/j.ceramint.2004.06.014.
[41] H. Gao, Z. Li, and P. Zhao, “Green synthesis of nanocrystalline α-Al2O3 powders by both wet-chemical and mechanochemical methods,” Modern Physics Letters B, vol. 32, no. 8, pp. 1–9, 2018, doi: 10.1142/S0217984918501099.
[42] T. Noguchi, K. Matsui, N. M. Islam, Y. Hakuta, and H. Hayashi, “Rapid synthesis of γ-Al2O3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system,” Journal of Supercritical Fluids, vol. 46, no. 2, pp. 129–136, 2008, doi: 10.1016/j.supflu.2008.04.011.
[43] M. Hasanpoor, H. Fakhr Nabavi, and M. Aliofkhazraei, “Microwave-assisted synthesis of alumina nanoparticles using some plants extracts,” Journal of Nanostructures, vol. 7, no. 1, pp. 40–46, 2017, doi: 10.22052/jns.2017.01.005.
[44] M. Bodaghi, A. Mirhabibi, M. Tahriri, H. Zolfonoon, and M. Karimi, “Mechanochemical assisted synthesis and powder characteristics of nanostructure ceramic of α-Al2O3 at room temperature,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 162, no. 3, pp. 155–161, 2009, doi: 10.1016/j.mseb.2009.03.021.
[45] Y. Wang, J. Wang, M. Shen, and W. Wang, “Synthesis and properties of thermostable γ-alumina prepared by hydrolysis of phosphide aluminum,” Journal of Alloys and Compounds, vol. 467, no. 1–2, pp. 405–412, 2009, doi: 10.1016/j.jallcom.2007.12.007.
[46] A. Varma, A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan, “Solution combustion synthesis of nanoscale materials,” Chemical Reviews, vol. 116, no. 23, pp. 14493–14586, 2016, doi: 10.1021/acs.chemrev.6b00279.
[47] M. I. Kandil, H. S. Jahin, H. A. Dessouki, and M. Y. Nassar, “Synthesis and characterization of γ-Al2O3 and α-Al2O3 nanoparticles using a facile, inexpensive auto-combustion approach,” Egypt. J. Chem., vol. 64, no. 5, pp. 2509–2515, 2021, doi: 10.21608/EJCHEM.2021.61793.3330
[48] R. Rogojan, E. Andronescu, C. Ghiţulicǎ, and B. Ştefan Vasile, “Synthesis and characterization of alumina nano-powder obtained by sol-gel method,” UPB Scientific Bulletin Series B Chemical Material Science, vol. 73, no. 2, pp. 67–76, 2011.
[49] Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, and M. Li, “Hydrothermal synthesis of nanomaterials,” Journal of Nanomaterials., vol. 2020, 2020, doi: 10.1155/2020/8917013.
[50] A. Kumar, Y. Kuang, Z. Liang, and X. Sun, “Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review,” Material Today Nano, vol. 11, p. 100076, 2020, doi: 10.1016/j.mtnano.2020.100076.
[51] L. Sharifi, M. Beyhaghi, T. Ebadzadeh, and E. Ghasemi, “Microwave-assisted sol-gel synthesis of alpha alumina nanopowder and study of the rheological behavior,” Ceramic International, vol. 39, no. 2, pp. 1227–1232, 2013, doi: 10.1016/j.ceramint.2012.07.050.
[52] A. T. Simbara, A. L. Muharam, I. Hanifa, K. M. Rizky, R. F. Fadhilla, and A. B. D. Nandiyanto, “Review: comparison of the LiBH4 material synthesis method and its application as hydrogen energy storage,” Journal of Applied Science and Environmental Studies, vol. 3, no. 4, pp. 232–253, 2020.
[53] M. Ullah, M. E. Ali, and S. B. A. Hamid, “Surfactant-assisted ball milling: A novel route to novel materials with controlled nanostructure-A review,” Reviews Advanced Material Sciences, vol. 37, no. 1–2, pp. 1–14, 2014
[54] A. Mohapatra, S. Agarwal, and M. Genesereth, “Policies,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9992 LNAI. pp. 291–302, 2016, doi: 10.1007/978-3-319-50127-7_24.
[55] S. Thamizharasan and N. A. Saravanan, “Nanosization of drug biomaterials and its solubility enhancement by high energy ball milling,” Journal Nanoscience Technology, vol. 5, no. 1, pp. 237–239, 2017, [Online]. Available: http://jacsdirectory.com/journal-of-nanoscience-and-technology/articleview.php?id=67 (accessed July 05, 2021).