Carboxymethyl cellulose films derived from pineapple waste: Fabrication and properties

Main Article Content

Heru Suryanto
https://orcid.org/0000-0001-7037-1868
Daimon Syukri
https://orcid.org/0000-0003-3433-9486
Anni Faridah
https://orcid.org/0000-0003-4561-6645
Uun Yanuhar
https://orcid.org/0000-0003-3360-8752
Joseph Selvi Binoj
https://orcid.org/0000-0002-7222-4463
Fajar Nusantara
https://orcid.org/0009-0002-7062-0646
Komarudin Komarudin
https://orcid.org/0000-0001-8854-9206
Ulfieda Anwar Ulhaq
https://orcid.org/0009-0006-2057-2235

Abstract

Plastic waste poses a significant environmental challenge due to its non-biodegradable nature, emphasizing the need for sustainable alternatives like bioplastics from natural resources. This study develops and characterizes bioplastic films made from carboxymethyl cellulose (CMC) derived from bacterial cellulose synthesized using pineapple biowaste. Pineapple waste underwent fermentation to produce bacterial cellulose, which was chemically modified into CMC. Films were fabricated using CMC solutions with varying glycerol concentrations (0.5%, 1.0%, 1.5%, and 2.5% v/v). Characterization techniques, including SEM, XRD, FTIR, TGA, mechanical testing, and antibacterial assays, revealed that increasing glycerol concentrations smoothed the film's cross-sectional morphology, reduced crystallinity, and altered functional groups (e.g., new peaks at 870 cm⁻¹ and 935 cm⁻¹ attributed to C–H deformation). TGA indicated a four-stage thermal degradation pattern, with mass loss increasing from 77.2% to 88.4% at 2.5% glycerol, reflecting enhanced plasticization. Mechanical testing showed that the highest glycerol concentration increased film flexibility by 40.7 times while reducing tensile strength by 89.7%. Antibacterial activity against E. coli and S. aureus also improved with glycerol content. These results demonstrate the potential of CMC-based bioplastic films as sustainable packaging materials, offering customizable properties and promoting the value-added use of agricultural waste.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] N. Faradiba and R. E. A. Sartika, “5 Negara dengan Biodiversitas Tertinggi di Dunia, Indonesia Nomor 2,” Kompas. [Online]. Available: https://www.kompas.com/sains/read/2023/01/08/150000123/5-negara-dengan-biodiversitas-tertinggi-di-dunia-indonesia-nomor-2
[2] U. Yanuhar et al., “Utilization of Pineapple Peel Waste/ZnO Nanoparticles Reinforcement for Cellulose-Based Nanocomposite Membrane and Its Characteristics,” Journal of Polymers and the Environment, vol. 32, no. 8, pp. 3749–3764, Aug. 2024, doi: 10.1007/s10924-024-03205-9.
[3] U. Yanuhar, H. Suryanto, S. A. Sardjono, I. K. Ningrum, A. Aminnudin, and J. S. Binoj, “Effect of Titanium Dioxide Nanoparticle on Properties of Nanocomposite Membrane Made of Bacterial Cellulose,” Journal of Natural Fibers, vol. 19, no. 16, pp. 13914–13927, Nov. 2022, doi: 10.1080/15440478.2022.2112797.
[4] A. Das, T. Ringu, S. Ghosh, and N. Pramanik, “A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers,” Polymer Bulletin, vol. 80, no. 7, pp. 7247–7312, Jul. 2023, doi: 10.1007/s00289-022-04443-4.
[5] A. K. V, M. Hasan, S. Mangaraj, P. M, D. K. Verma, and P. P. Srivastav, “Trends in Edible Packaging Films and its Prospective Future in Food: A Review,” Applied Food Research, vol. 2, no. 1, p. 100118, Jun. 2022, doi: 10.1016/j.afres.2022.100118.
[6] R. Ramakrishnan and S. V. Kulandhaivelu, “Preparation and properties of sodium alginate/carboxymethyl cellulose films for packaging application,” Chiang Mai Journal of Science, vol. 48, no. 6, pp. 1634–1644, 2021.
[7] M. Tabari, “Investigation of Carboxymethyl Cellulose (CMC) on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films,” Foods, vol. 6, no. 6, p. 41, May 2017, doi: 10.3390/foods6060041.
[8] N. Pinpru and S. Woramongkolchai, “Crosslinking effects on alginate/carboxymethyl cellulose packaging film properties,” Chiang Mai Journal of Science, vol. 47, no. 4 Special Issue 2, pp. 712–722, 2020.
[9] T. Nongnual, N. Butprom, S. Boonsang, and S. Kaewpirom, “Citric acid crosslinked carboxymethyl cellulose edible films: A case study on preserving freshness in bananas,” International Journal of Biological Macromolecules, vol. 267, p. 131135, May 2024, doi: 10.1016/j.ijbiomac.2024.131135.
[10] M. Thangavelu and S. V. Kulandhaivelu, “Development and Characterization of Pullulan-Carboxymethyl Cellulose Blend Film for Packaging Applications,” International Journal of Polymer Science, vol. 2022, pp. 1–10, Jun. 2022, doi: 10.1155/2022/9649726.
[11] S. Nasibi et al., “A review of Polyvinyl alcohol / Carboxiy methyl cellulose (PVA/CMC) composites for various applications,” Journal of Composites and Compounds, vol. 2, no. 3, pp. 68–75, May 2020, doi: 10.29252/jcc.2.2.2.
[12] L. M. Al-Harbi, Q. A. Alsulami, M. O. Farea, and A. Rajeh, “Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices,” Journal of Molecular Structure, vol. 1272, p. 134244, Jan. 2023, doi: 10.1016/j.molstruc.2022.134244.
[13] P. Rachtanapun et al., “Carboxymethyl Bacterial Cellulose from Nata de Coco: Effects of NaOH,” Polymers, vol. 13, no. 3, p. 348, Jan. 2021, doi: 10.3390/polym13030348.
[14] R. Ramakrishnan, J. T. Kim, S. Roy, and A. Jayakumar, “Recent advances in carboxymethyl cellulose-based active and intelligent packaging materials: A comprehensive review,” International Journal of Biological Macromolecules, vol. 259, p. 129194, Feb. 2024, doi: 10.1016/j.ijbiomac.2023.129194.
[15] I. Moussa, R. Khiari, A. Moussa, M. N. Belgacem, and M. F. Mhenni, “Preparation and Characterization of Carboxymethyl Cellulose with a High Degree of Substitution from Agricultural Wastes,” Fibers and Polymers, vol. 20, no. 5, pp. 933–943, May 2019, doi: 10.1007/s12221-019-8665-x.
[16] R. Suriyatem et al., “Physical Properties of Carboxymethyl Cellulose from Palm Bunch and Bagasse Agricultural Wastes: Effect of Delignification with Hydrogen Peroxide,” Polymers, vol. 12, no. 7, p. 1505, Jul. 2020, doi: 10.3390/polym12071505.
[17] C. M. Y. Huang et al., “Synthesis and characterisation of carboxymethyl cellulose from various agricultural wastes,” Cellulose Chemistry and Technology, vol. 51, no. 7–8, pp. 665–672, 2017.
[18] N. Haleem, M. Arshad, M. Shahid, and M. A. Tahir, “Synthesis of carboxymethyl cellulose from waste of cotton ginning industry,” Carbohydrate Polymers, vol. 113, pp. 249–255, Nov. 2014, doi: 10.1016/j.carbpol.2014.07.023.
[19] N. A. Yusoff, L. Y. Yee, N. I. Iberahim, N. A. Zainol, S. Abdullah, and S. N. Zailani, “Synthesis and characterization of carboxymethyl cellulose derived from office paper waste for methylene blue dye removal,” IOP Conference Series: Earth and Environmental Science, vol. 646, no. 1, p. 012008, Jan. 2021, doi: 10.1088/1755-1315/646/1/012008.
[20] J. Chen, H. Li, C. Fang, Y. Cheng, T. Tan, and H. Han, “Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups,” Carbohydrate Polymers, vol. 237, p. 116040, Jun. 2020, doi: 10.1016/j.carbpol.2020.116040.
[21] S. Hidayati, Zulferiyenni, U. Maulidia, W. Satyajaya, and S. Hadi, “Effect of glycerol concentration and carboxy methyl cellulose on biodegradable film characteristics of seaweed waste,” Heliyon, vol. 7, no. 8, p. e07799, Aug. 2021, doi: 10.1016/j.heliyon.2021.e07799.
[22] S. D. Yuwono, E. Wahyuningsih, Noviany, A. A. Kiswandono, W. Simanjuntak, and S. Hadi, “Characterization of Carboxymethyl Cellulose (CMC) Synthesized from Microcellulose of Cassava Peel,” Materiale Plastice, vol. 57, no. 4, pp. 225–235, Jan. 2021, doi: 10.37358/MP.20.4.5422.
[23] N. S. Ab Rasid, M. Mohammad Zainol, and N. A. Saidina Amin, “Synthesis and Characterization of Carboxymethyl Cellulose Derived from Empty Fruit Bunch,” Sains Malaysiana, vol. 50, no. 9, pp. 2523–2535, Sep. 2021, doi: 10.17576/jsm-2021-5009-03.
[24] V. Miljković, I. Gajić, and L. Nikolić, “Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture,” Polymers, vol. 13, no. 23, p. 4115, Nov. 2021, doi: 10.3390/polym13234115.
[25] T. Mahsuli, A. Larasati, A. Aminnudin, and J. Maulana, “Effect of the Homogenization Process on Titanium Oxide-Reinforced Nanocellulose Composite Membranes,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 7, no. 2, p. 137, 2023, doi: 10.17977/um016v7i22023p137.
[26] L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Textile Research Journal, vol. 29, no. 10, pp. 786–794, Oct. 1959, doi: 10.1177/004051755902901003.
[27] C. Baiya, L. Nannuan, Y. Tassanapukdee, O. Chailapakul, and K. Songsrirote, “The Synthesis of Carboxymethyl Cellulose‐Based Hydrogel from Sugarcane Bagasse Using Microwave‐Assisted Irradiation for Selective Adsorption of Copper( II ) Ions,” Environmental Progress & Sustainable Energy, vol. 38, no. s1, Mar. 2019, doi: 10.1002/ep.12950.
[28] A. Biswas, S. Kim, G. W. Selling, and H. N. Cheng, “Conversion of agricultural residues to carboxymethylcellulose and carboxymethylcellulose acetate,” Industrial Crops and Products, vol. 60, pp. 259–265, Sep. 2014, doi: 10.1016/j.indcrop.2014.06.004.
[29] W. Klunklin et al., “Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End,” Polymers, vol. 13, no. 1, p. 81, Dec. 2020, doi: 10.3390/polym13010081.
[30] A. Clara Lancarovici Alves, R. Gr, e, and A. Jos�Felix Carvalho, “Thermal and Mechanical Properties of Thermoplastic Starch and Poly(Vinyl Alcohol-Co-Ethylene) Blends,” Journal of Renewable Materials, vol. 7, no. 3, pp. 245–252, 2019, doi: 10.32604/jrm.2019.00833.
[31] S. X. Drakopoulos, O. Vryonis, Z. Špitalský, H. Peidayesh, and L. Lendvai, “Thermoplastic Starch Processed under Various Manufacturing Conditions: Thermal and Electrical Properties,” Biomacromolecules, vol. 25, no. 9, pp. 5938–5948, Sep. 2024, doi: 10.1021/acs.biomac.4c00602.
[32] R. Phiri, S. Mavinkere Rangappa, S. Siengchin, O. P. Oladijo, and H. N. Dhakal, “Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review,” Advanced Industrial and Engineering Polymer Research, vol. 6, no. 4, pp. 436–450, Oct. 2023, doi: 10.1016/j.aiepr.2023.04.004.
[33] S. Nanda, B. R. Patra, R. Patel, J. Bakos, and A. K. Dalai, “Innovations in applications and prospects of bioplastics and biopolymers: a review,” Environmental Chemistry Letters, vol. 20, no. 1, pp. 379–395, Feb. 2022, doi: 10.1007/s10311-021-01334-4.
[34] R. Phiri, S. M. Rangappa, S. Siengchin, and D. Marinkovic, “Agro-waste natural fiber sample preparation techniques for bio-composites development: Methodological insights,” Facta Universitatis, Series: Mechanical Engineering, vol. 21, no. 4, p. 631, Dec. 2023, doi: 10.22190/FUME230905046P.
[35] Grand View Research, “North America Biodegradable Plastic Market Worth $2,333.1 Million By 2030,” Grand View Research. Accessed: Dec. 27, 2024. [Online]. Available: https://www.grandviewresearch.com/press-release/north-america-biodegradable-plastic-market-analysis
[36] G. Kovtun, D. Casas, and T. Cuberes, “Influence of Glycerol on the Surface Morphology and Crystallinity of Polyvinyl Alcohol Films,” Polymers, vol. 16, no. 17, p. 2421, Aug. 2024, doi: 10.3390/polym16172421.
[37] Z. Eslami, S. Elkoun, M. Robert, and K. Adjallé, “A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films,” Molecules, vol. 28, no. 18, p. 6637, Sep. 2023, doi: 10.3390/molecules28186637.
[38] H. Hernando et al., “Impact of glycerol on oil palm trunk starch bioplastics enhanced with citric-acid epoxidized palm oil oligomers,” Case Studies in Chemical and Environmental Engineering, vol. 10, p. 100839, Dec. 2024, doi: 10.1016/j.cscee.2024.100839.
[39] R. Hatib, K. Anwar, R. Magga, M. A. Astak, D. Widhiyanuriyawan, and Wardoyo, “Performance Enhancement of Dye Sensitized Solar Cell (DSSC) through TiO2/rGO Hybrid: Comprehensive Study on Synthesis and Characterization,” Journal of Mechanical Engineering Science and Technology, vol. 8, no. 1, 2024, doi: 10.17977/um016v8i12024p138.
[40] S. Sukarni et al., “Combustion of microalgae nannochloropsis oculata biomass: Cellular macromolecular and mineralogical content changes during thermal decomposition,” Songklanakarin Journal of Science and Technology, vol. 40, no. 6, pp. 1456–1463, 2018, doi: 10.14456/sjst-psu.2018.178.
[41] K. S. Obayomi et al., “Selective adsorption of organic dyes from aqueous environment using fermented maize extract-enhanced graphene oxide-durian shell derived activated carbon composite,” Chemosphere, vol. 339, p. 139742, Oct. 2023, doi: 10.1016/j.chemosphere.2023.139742.
[42] R. G. Zhbankov, “Methods for Obtaining the Infrared Spectra of Cellulose and Related Materials,” in Infrared Spectra of Cellulose and its Derivatives, Boston, MA: Springer US, 1995, pp. 1–33. doi: 10.1007/978-1-4899-2732-3_1.
[43] S. Sivasankari, R. Kalaivizhi, and N. Gowriboy, “Cellulose Acetate (CA) Membrane Tailored with Fe 3 O 4 @ZnO Core Shell Nanoparticles: Fabrication, Structural analysis and Its Adsorption Analysis,” ChemistrySelect, vol. 6, no. 9, pp. 2350–2359, Mar. 2021, doi: 10.1002/slct.202004689.
[44] S. W. Suciyati, P. Manurung, S. Sembiring, and R. Situmeang, “Comparative study of Cladophora sp. cellulose by using FTIR and XRD,” Journal of Physics: Conference Series, vol. 1751, no. 1, p. 012075, Jan. 2021, doi: 10.1088/1742-6596/1751/1/012075.
[45] S. Hidayat, P. Ardiaksa, N. Riveli, and I. Rahayu, “Synthesis and characterization of carboxymethyl cellulose (CMC) from salak-fruit seeds as anode binder for lithium-ion battery,” Journal of Physics: Conference Series, vol. 1080, p. 012017, Aug. 2018, doi: 10.1088/1742-6596/1080/1/012017.
[46] N. Suderman, M. I. N. Isa, and N. M. Sarbon, “Effect of drying temperature on the functional properties of biodegradable CMC-based film for potential food packaging,” International Food Research Journal, vol. 23, no. 3, pp. 1075–1084, 2016.
[47] A. A. El-Bana, N. M. Barakat, A. M. Abdelghany, and M. S. Meikhail, “Effect of surfactants addition on physical, structure and antimicrobial activity of (Na-CMC/Na–Alg) biofilms,” Polymer Bulletin, vol. 80, no. 3, pp. 2883–2909, Mar. 2023, doi: 10.1007/s00289-022-04189-z.
[48] P. Chen, F. Xie, F. Tang, and T. McNally, “Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: Role of interactions in determining structure and properties,” International Journal of Biological Macromolecules, vol. 163, pp. 683–693, Nov. 2020, doi: 10.1016/j.ijbiomac.2020.07.004.
[49] I. C. E. Utari et al., “Characterization and Performance Nanofiltration Membranes in Water Quality for Goldfish (Carassius auratus) Aquaculture,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 2, p. 332, Oct. 2024, doi: 10.17977/um016v8i22024p332.
[50] Y. Liu, Y. Wei, Y. He, Y. Qian, C. Wang, and G. Chen, “Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions,” ACS Omega, vol. 8, no. 17, pp. 15114–15123, May 2023, doi: 10.1021/acsomega.2c08239.
[51] M. Almazrouei, I. Adeyemi, and I. Janajreh, “Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol,” Biomass Conversion and Biorefinery, vol. 12, no. 10, pp. 4403–4417, Oct. 2022, doi: 10.1007/s13399-022-02526-w.
[52] S. Faust, J. Foerster, M. Lindner, and M. Schmid, “Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high‐moisture extrusion processing,” Polymer Engineering & Science, vol. 62, no. 1, pp. 95–102, Jan. 2022, doi: 10.1002/pen.25836.
[53] J. Tarique, S. M. Sapuan, and A. Khalina, “Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers,” Scientific Reports, vol. 11, no. 1, p. 13900, Jul. 2021, doi: 10.1038/s41598-021-93094-y.
[54] I. G. N. N. Santhiarsa, N. M. Dwidiani, I. G. N. P. Tenaya, and I. G. A. Negara, “Impact of Natural Polymer Proportions on the Fire-Retardant Properties of Bioplastics,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 2, p. 434, Nov. 2024, doi: 10.17977/um016v8i22024p434.
[55] R. Reinaldo and D. Setyanto, “The Potential of Ramie Fiber as Reinforcement in Calcium Carbonate-Filled Polyester Resin Matrix Composites for Roofing Applications,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 2, p. 363, Oct. 2024, doi: 10.17977/um016v8i22024p363.
[56] Z. Sun et al., “The Improved Properties of Carboxymethyl Bacterial Cellulose Films with Thickening and Plasticizing,” Polymers, vol. 14, no. 16, p. 3286, Aug. 2022, doi: 10.3390/polym14163286.
[57] O. Lombo Vidal et al., “Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues,” International Journal of Biological Macromolecules, vol. 146, pp. 730–738, Mar. 2020, doi: 10.1016/j.ijbiomac.2019.10.123.
[58] A. Setiawan, F. D. Wahyuningsih, and R. Z. Mirahati, “Mechanical Properties of Biocomposite with Various Composition of CaCO3 and Starch,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 7, no. 1, p. 1, 2023, doi: 10.17977/um016v7i12023001.
[59] K. Shiva, A. Soleimani, J. Morshedian, F. Farahmandghavi, and F. Shokrolahi, “Improving the antibacterial properties of polyethylene food packaging films with Ajwain essential oil adsorbed on chitosan particles,” Scientific Reports, vol. 14, no. 1, p. 28802, Nov. 2024, doi: 10.1038/s41598-024-80349-7.
[60] D. A. Jahn, J. Wong, J. Bachler, T. Loerting, and N. Giovambattista, “Glass polymorphism in glycerol–water mixtures: I. A computer simulation study,” Physical Chemistry Chemical Physics, vol. 18, no. 16, pp. 11042–11057, 2016, doi: 10.1039/C6CP00075D.
[61] D. Fransiska et al., “Impact of agar–glycerol ratios on the physicochemical properties of biodegradable seaweed films: A compositional study,” International Journal of Biological Macromolecules, vol. 280, p. 135855, Nov. 2024, doi: 10.1016/j.ijbiomac.2024.135855.
[62] J. Wu et al., “Facile preparation of collagen fiber–glycerol-carboxymethyl cellulose composite film by immersing method,” Carbohydrate Polymers, vol. 229, p. 115429, Feb. 2020, doi: 10.1016/j.carbpol.2019.115429.
[63] D. M. Mojica-Muñoz et al., “Optimizing biodegradable plastics: Molecular dynamics insights into starch plasticization with glycerol and oleic acid,” Journal of Molecular Graphics and Modelling, vol. 126, p. 108674, Jan. 2024, doi: 10.1016/j.jmgm.2023.108674.
[64] J. J. Benitez et al., “Transparent, plasticized cellulose-glycerol bioplastics for food packaging applications,” International Journal of Biological Macromolecules, vol. 273, p. 132956, Jul. 2024, doi: 10.1016/j.ijbiomac.2024.132956.
[65] M. Dick, T. M. H. Costa, A. Gomaa, M. Subirade, A. de O. Rios, and S. H. Flôres, “Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties,” Carbohydrate Polymers, vol. 130, pp. 198–205, Oct. 2015, doi: 10.1016/j.carbpol.2015.05.040.
[66] Y. Sun et al., “The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study,” Cellulose, vol. 25, no. 10, pp. 5893–5908, Oct. 2018, doi: 10.1007/s10570-018-1968-z.
[67] I. Cielecka et al., “Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity,” Cellulose, vol. 26, no. 9, pp. 5409–5426, Jun. 2019, doi: 10.1007/s10570-019-02501-1.
[68] K. M. Barbour, C. Weihe, S. D. Allison, and J. B. H. Martiny, “Bacterial community response to environmental change varies with depth in the surface soil,” Soil Biology and Biochemistry, vol. 172, p. 108761, Sep. 2022, doi: 10.1016/j.soilbio.2022.108761.
[69] Y. Qiu et al., “The Effects of Ventilation, Humidity, and Temperature on Bacterial Growth and Bacterial Genera Distribution,” International Journal of Environmental Research and Public Health, vol. 19, no. 22, p. 15345, Nov. 2022, doi: 10.3390/ijerph192215345.
[70] A. M. Brauer, H. Shi, P. A. Levin, and K. C. Huang, “Physiological and regulatory convergence between osmotic and nutrient stress responses in microbes,” Current Opinion in Cell Biology, vol. 81, p. 102170, Apr. 2023, doi: 10.1016/j.ceb.2023.102170.
[71] D. Asensio et al., “Soil biomass-related enzyme activity indicates minimal functional changes after 16 years of persistent drought treatment in a Mediterranean holm oak forest,” Soil Biology and Biochemistry, vol. 189, p. 109281, Feb. 2024, doi: 10.1016/j.soilbio.2023.109281.
[72] M. Akhoondi, H. Oldenhof, H. Sieme, and W. F. Wolkers, “Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents,” Molecular Membrane Biology, vol. 29, no. 6, pp. 197–206, Sep. 2012, doi: 10.3109/09687688.2012.699106.