Overview of anodization and silver coating for titanium alloys: Process parameters and biomedical insights

Main Article Content

Andoko Andoko
https://orcid.org/0000-0003-1923-2445
Syafira Bilqis Khoyroh
Aminnudin Aminnudin
https://orcid.org/0000-0002-3883-0136
Riduwan Prasetya
https://orcid.org/0000-0002-2113-4652

Abstract

Anodization is a critical electrochemical process for producing titanium oxide layers with varying characteristics, significantly influencing the physicochemical properties, biocompatibility, and performance of bone implants. This study systematically reviews the current state of research on the effects of anodization parameters and silver coatings on the morphology, functional groups, and phase identification of Ti-6Al-4V bone implants. By synthesizing findings from 18 relevant studies selected from 1044 screened articles (2000–2023), this review provides a comprehensive framework for understanding the role of anodization and silver coating in improving implant performance. The review highlights how variations in anodization parameters—such as electrolyte composition, voltage, and duration—significantly impact critical implant properties, including corrosion resistance, antimicrobial efficacy, and biocompatibility. Additionally, silver coatings are underscored for their antimicrobial benefits and ability to address challenges such as bacterial adhesion and biofilm formation. Beyond functional improvements, this review identifies gaps in the literature, such as the limited exploration of process optimization and the environmental implications of implant fabrication, offering actionable insights for future research. The novelty of this article lies in its holistic synthesis of fragmented findings, bridging material science, biomedical functionality, and sustainability. It provides a structured evaluation of key process parameters and their influence on implant performance, emphasizing the need for balanced approaches that integrate clinical effectiveness with environmentally responsible practices. By offering a unified perspective, this review serves as a valuable reference for advancing both research and practical applications in the development of high-performance bone implants.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] E. Frasnawati, A. B. Aritonang, and I. Syahbanu, “Sintesis dan Karakterisasi TiO2/Ti Nanotube Menggunakan Metode Anodisasi,” Jurnal Kimia Khatulistiwa, vol. 8, no. 2, pp. 9–14, 2019.
[2] S. J. Lee and S. J. Kim, “Essential anti-corrosive behavior of anodized Al alloy by applied current density,” Applied Surface Science, vol. 481, no. November 2018, pp. 637–641, 2019, doi: 10.1016/j.apsusc.2019.03.155.
[3] M. Mubarak Ali and S. Sathiya, “Evaluation on physico-chemical and corrosion properties of anodized aluminium surface using sodium oxalate-sodium silicate bath at room temperature,” Current Science, vol. 118, no. 2, pp. 234–242, 2020, doi: 10.18520/cs/v118/i2/234-242.
[4] M. Bestetti, F. Barlassina, A. Da Forno, and P. Cavallotti, “Effect of electrolyte composition on micro-arc anodization of AM60B magnesium alloy,” Metallurgical Science and Technology, vol. 26–1, pp. 9–15, 2008.
[5] N. A. El Mahallawy, M. A. Shoeib, and M. H. Abouelenain, “AZ91 Magnesium Alloys: Anodizing of Using Environmental Friendly Electrolytes,” Journal of Surface Engineered Materials and Advanced Technology, vol. 01, no. 02, pp. 62–72, 2011, doi: 10.4236/jsemat.2011.12010.
[6] M. Mehdizade, M. Soltanieh, and A. R. Eivani, “Investigation of anodizing time and pulse voltage modes on the corrosion behavior of nanostructured anodic layer in commercial pure aluminum,” Surface and Coatings Technology, vol. 358, no. August 2018, pp. 741–752, 2019, doi: 10.1016/j.surfcoat.2018.08.046.
[7] A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, and B. S. Putra, “Corrosion resistance improvement of aluminum under anodizing process,” AIP Conference Proceedings, vol. 1977, 2018, doi: 10.1063/1.5042862.
[8] C. Girginov, S. Kozhukharov, M. Milanes, and M. Machkova, “Impact of the anodizing duration on the surface morphology and performance of A2024-T3 in a model corrosive medium,” Materials Chemistry and Physics, vol. 198, pp. 137–144, 2017, doi: 10.1016/j.matchemphys.2017.05.049.
[9] H. Wu, Y. Cheng, L. Li, Z. Chen, H. Wang, and Z. Zhang, “The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films,” Applied Surface Science, vol. 253, no. 24, pp. 9387–9394, Oct. 2007, doi: 10.1016/j.apsusc.2007.05.085.
[10] D. L. Torres, M. C. Pereira, J. W. J. Silva, E. N. Codaro, and H. A. Acciari, “Effect of phosphoric acid concentration and anodizing time on the properties of anodic films on titanium,” Journal of Engineering Science and Technology, vol. 10, no. 7, pp. 841–848, 2015.
[11] D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, “Preparation of TiO 2 layers on cp‐Ti and Ti6Al4V by thermal and anodic oxidation and by sol‐gel coating techniques and their characterization,” Journal of Biomedical Materials Research, vol. 59, no. 1, pp. 18–28, Jan. 2002, doi: 10.1002/jbm.1212.
[12] P. H. Setyarini, “Pengaruh Tegangan Pada Proses Anodisasi Terhadap Kekasaran Permukaan dan Ukuran Pori,” in Prosiding Seniati, 2018, pp. 176–180, doi: 10.36040/seniati.v4i2.1309.
[13] M. Łępicka, M. Grądzka-Dahlke, and A. Sobolewski, “The effect of anodizing conditions on the corrosion resistance of Ti6Al4V titanium alloy,” Materialpruefung/Materials Testing, vol. 57, no. 5, pp. 393–397, 2015, doi: 10.3139/120.110725.
[14] L. A. de Oliveira, R. M. P. da Silva, A. C. D. Rodas, R. M. Souto, and R. A. Antunes, “Surface chemistry, film morphology, local electrochemical behavior and cytotoxic response of anodized AZ31B magnesium alloy,” Journal of Materials Research and Technology, vol. 9, no. 6, pp. 14754–14770, 2020, doi: 10.1016/j.jmrt.2020.10.063.
[15] X. Zhao, G. Wei, Y. Yu, Y. Guo, and A. Zhang, “An analysis of mechanical properties of anodized aluminum film at high stress,” Surface Review and Letters, vol. 22, no. 1, p. 1550002, 2015, doi: 10.1142/S0218625X1550002X.
[16] A. A. S. Rizal, M. Darsin, R. K. K. Wibowo, and K. Anam, “Analysis of Titanium Mesh Ti6Al4V Formation Using Die Press Forming Machine for Cranioplasty,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 2, p. 445, Nov. 2024, doi: 10.17977/um016v8i22024p445.
[17] L. Benea and N. Simionescu-Bogatu, “Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions,” Materials, vol. 14, no. 23, p. 7404, Dec. 2021, doi: 10.3390/ma14237404.
[18] Margono, M. Kozin, D. Setiadhi, H. K. Hassan, and R. Lakshminarasimhan, “Development of Titanium Nitride-Based Coatings for Wear Resistant Materials: A Review,” Mechanics Exploration and Material Innovation, vol. 1, no. 3, 2024, doi: 10.21776/ub.memi.2024.001.03.5.
[19] Y. Subagyo et al., “Development of magnesium biocomposites with hydroxyapatite or carbonate apatite reinforcement as implant candidates: A review,” Mechanical Engineering for Society and Industry, vol. 3, no. 3, pp. 152–165, 2023, doi: 10.31603/mesi.10389.
[20] Y. D. B. A. Puraditya, D. D. Mahendra, and P. H. Setyarini, “Characteristics of Bio-ceramic Coating on Corrosion Rate of Stainless Steel 316L and Titanium (Ti-6Al-4V),” Mechanics Exploration and Material Innovation, vol. 1, no. 1, pp. 20–26, Jan. 2024, doi: 10.21776/ub.memi.2024.001.01.3.
[21] U. Fowdar, “Antibacterial Properties of TiO2 Nanotubes coated with nano-ZnO and nano-Ag,” University of Plymouth, 2018.
[22] I. Vazirgiantzikis, S. L. George, and L. Pichon, “Surface characterisation and silver release from Ti-6Al-4V and anodic TiO2 after surface modification by ion implantation,” Surface and Coatings Technology, vol. 433, p. 128115, Mar. 2022, doi: 10.1016/j.surfcoat.2022.128115.
[23] M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” The BMJ, vol. 372, 2021, doi: 10.1136/bmj.n71.
[24] E. Aromataris and A. Pearson, “The systematic review: An overview,” American Journal of Nursing, vol. 114, no. 3, pp. 53–58, 2014, doi: 10.1097/01.NAJ.0000444496.24228.2c.
[25] P. Leavy, Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. Guilford Publications, 2022.
[26] R. K. Yin, Qualitative research from start to finish, vol. 2nd Ed. Guilford Publications, 2016.
[27] S. L. de Moura, “Aluminum anodizing: The study of the structure of the alumina layer.” 2013, [Online]. Available: https://www.slideshare.net/slideshow/aluminum-anodizing-the-study-of-the-structure-of-the-alumina-layer-34171077/34171077.
[28] A. W. Hassel and D. Diesing, “Modification of Trap Distributions in Anodic Aluminum Tunnel Barriers,” Journal of The Electrochemical Society, vol. 154, no. 10, p. C558, 2007, doi: 10.1149/1.2766646.
[29] M. Sakairi, H. Miyata, T. Kikuchi, and H. Takahashi, “Effect of potential, temperature, and fluoride ions on the repassivation kinetics of titanium in phosphate buffered saline solution with the photon rupture method,” Laser Chemistry, vol. 2009, 2009, doi: 10.1155/2009/436065.
[30] R. P. Sihombing, A. Ngatin, S. N. Junaedi, and W. Maulida, “Pengaruh Jenis Elektrolit Proses Anodisasi Aluminium Terhadap Efisiensi Proses Dan Sifat Mekanik (Kekerasan) Permukaan Dan Ketebalan Lapisan Oksida,” JC-T (Journal Cis-Trans): Jurnal Kimia dan Terapannya, vol. 6, no. 2, pp. 24–29, 2022, doi: 10.17977/um0260v6i22022p024.
[31] I. G. N. N. Santhiarsha, “Pengaruh Kuat Arus Listrik Dan Waktu Proses Anodizing Dekoratif Pada Aluminium Terhadap Kecerahan Dan Ketebalan Lapisan,” Jurnal Ilmiah Teknik Mesin Cakram, vol. Vol. 4, no. 1, pp. 75–82, 2010.
[32] S. D. Kahar, A. Macwan, R. Oza, V. Oza, and S. Shah, “Characterization and Corrosion Study of Titanium Anodized Film Developed in KOH Bath,” Journal of Engineering Research and Applications, vol. 3, no. 5, pp. 441–445, 2013.
[33] A. Anawati, H. Asoh, and S. Ono, “Corrosion resistance and apatite-forming ability of composite coatings formed on Mg-Al-Zn-Ca alloys,” Materials, vol. 12, no. 14, 2019, doi: 10.3390/ma12142262.
[34] M. F. Fitriana and A. Anawati, “Remarkable improvement in corrosion resistance of anodized AZ31 alloy by sealing with beeswax-colophony resin,” Journal of Physics: Conference Series, vol. 1191, no. 1, 2019, doi: 10.1088/1742-6596/1191/1/012032.
[35] B. S. Gugelmin, L. S. Santos, H. de A. Ponte, and C. E. B. Marino, “Electrochemical Stability and Bioactivity Evaluation of Ti6Al4V Surface Coated with Thin Oxide by EIS for Biomedical Applications,” Materials Research, vol. 18, no. 3, pp. 602–607, Jun. 2015, doi: 10.1590/1516-1439.201514.
[36] A. Kierzkowska, M. Malinowski, and E. Krasicka-Cydzik, “Characteristics of anodic layer on Ti6Al4V ELI alloy after bending,” International Journal of Computational Materials Science and Surface Engineering, vol. 1, no. 3, pp. 320–334, 2007, doi: 10.1504/IJCMSSE.2007.016427.
[37] W. C. Saraswati, A. Anawati, I. N. Jujur, and M. D. Gumelar, “Effect of coloring by anodizing on the corrosion behavior of Ti-6Al-4V alloy,” AIP Conference Proceedings, vol. 2232, no. April, 2020, doi: 10.1063/5.0001483.
[38] M. Mibus, C. Jensen, X. Hu, C. Knospe, M. L. Reed, and G. Zangari, “Dielectric breakdown and failure of anodic aluminum oxide films for electrowetting systems,” Journal of Applied Physics, vol. 114, no. 1, 2013, doi: 10.1063/1.4812395.
[39] A. Karambakhsh, A. Afshar, and P. Malekinejad, “Corrosion resistance and color properties of anodized Ti-6Al-4V,” Journal of Materials Engineering and Performance, vol. 21, no. 1, pp. 121–127, 2012, doi: 10.1007/s11665-010-9791-1.
[40] A. Karambakhsh, A. Afshar, S. Ghahramani, and P. Malekinejad, “Pure commercial titanium color anodizing and corrosion resistance,” Journal of Materials Engineering and Performance, vol. 20, no. 9, pp. 1690–1696, 2011, doi: 10.1007/s11665-011-9860-0.
[41] J. M. Jáquez-Muñoz et al., “Electrochemical Corrosion of Titanium and Titanium Alloys Anodized in H2SO4 and H3PO4 Solutions,” Coatings, vol. 12, no. 3, 2022, doi: 10.3390/coatings12030325.
[42] A. H. Mahmud, A. S. Habiballah, and A. M. M. Jani, “The Effect of Applied Voltage and Anodisation Time on Anodized Aluminum Oxide Nanostructures,” Materials Science Forum, vol. 819, pp. 103–108, Jun. 2015, doi: 10.4028/www.scientific.net/MSF.819.103.
[43] M. Gómez-Méndez, C. Durán-Pabón, D. I. Naranjo, M. A. Arenas, and S. J. Garciá-Vergara, “Anodizing of Ti6Al4V alloy for aeronautical applications,” Journal of Physics: Conference Series, vol. 1119, no. 1, 2018, doi: 10.1088/1742-6596/1119/1/012028.
[44] S. Chernousova and M. Epple, “Silver as antibacterial agent: Ion, nanoparticle, and metal,” Angewandte Chemie - International Edition, vol. 52, no. 6, pp. 1636–1653, 2013, doi: 10.1002/anie.201205923.
[45] J. Haryanto and W. S. B. Dwandaru, “Pengaruh konsentrasi larutan elektrolit h2so4 terhadap tegangan Dan Arus keluaran Aki kering bekas setelah ditambah larutan nanopartikel Perak,” Universitas Negeri Yogyakarta, 2018.
[46] S. K. Chang, Z. Zainal, K. B. Tan, N. A. Yusof, W. M. D. W. Yusoff, and S. R. S. Prabaharan, “Surface morphology and crystallinity of metal oxides in nickel-cobalt binary system,” Sains Malaysiana, vol. 41, no. 4, pp. 465–470, 2012.
[47] Y. Gong, X. Zhao, Z. Cai, S. E. O’Reilly, X. Hao, and D. Zhao, “A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills,” Marine Pollution Bulletin, vol. 79, no. 1–2, pp. 16–33, 2014, doi: 10.1016/j.marpolbul.2013.12.024.
[48] A. Manke, L. Wang, and Y. Rojanasakul, “Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity,” BioMed Research International, vol. 2013, pp. 1–15, 2013, doi: 10.1155/2013/942916.
[49] A. Besinis, T. De Peralta, and R. D. Handy, “The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays,” Nanotoxicology, vol. 8, no. 1, pp. 1–16, 2014, doi: 10.3109/17435390.2012.742935.
[50] Y. Matsumura, K. Yoshikata, S. ichi Kunisaki, and T. Tsuchido, “Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate,” Applied and Environmental Microbiology, vol. 69, no. 7, pp. 4278–4281, 2003, doi: 10.1128/AEM.69.7.4278-4281.2003.
[51] I. T. Garipov et al., “Silver Nanoparticles as a New Generation of Antimicrobial Prophylaxis,” Journal of Siberian Federal University. Biology, no. December, pp. 266–276, 2019, doi: 10.17516/1997-1389-0301.
[52] A. B. G. Lansdown, Silver in healthcare: its antimicrobial efficacy and safety in use. Royal Society of Chemistry, 2010.
[53] W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, “Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli,” Applied and Environmental Microbiology, vol. 74, no. 7, pp. 2171–2178, Apr. 2008, doi: 10.1128/AEM.02001-07.
[54] I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004, doi: 10.1016/j.jcis.2004.02.012.
[55] C. N. Lok et al., “Silver nanoparticles: Partial oxidation and antibacterial activities,” Journal of Biological Inorganic Chemistry, vol. 12, no. 4, pp. 527–534, 2007, doi: 10.1007/s00775-007-0208-z.
[56] Z. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles,” Nano Letters, vol. 12, no. 8, pp. 4271–4275, Aug. 2012, doi: 10.1021/nl301934w.
[57] B. Le Ouay and F. Stellacci, “Antibacterial activity of silver nanoparticles: A surface science insight,” Nano Today, vol. 10, no. 3, pp. 339–354, Jun. 2015, doi: 10.1016/j.nantod.2015.04.002.
[58] M. Stevanović et al., “Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity,” Acta Biomaterialia, vol. 10, no. 1, pp. 151–162, Jan. 2014, doi: 10.1016/j.actbio.2013.08.030.
[59] L. Besra and M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD),” Progress in Materials Science, vol. 52, no. 1, pp. 1–61, 2007, doi: 10.1016/j.pmatsci.2006.07.001.
[60] X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering R: Reports, vol. 47, no. 3–4, pp. 49–121, 2004, doi: 10.1016/j.mser.2004.11.001.
[61] N. Bayat, S. Sanjabi, and Z. H. Barber, “Improvement of corrosion resistance of NiTi sputtered thin films by anodization,” Applied Surface Science, vol. 257, no. 20, pp. 8493–8499, 2011, doi: 10.1016/j.apsusc.2011.05.001.
[62] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy,” Surface and Interface Analysis, vol. 27, no. 7, pp. 629–637, Jul. 1999, doi: 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0.
[63] A. Kumar and M. K. Kushwaha, “Anodization of Titanium Alloy (Grade-5) and Influence of Anodic Voltage and Electrolytic Concentration on Morphology and Aesthetic Appearance of an Oxide Layer,” Journal of Emerging Technologies and Innovative Research, vol. 6, no. 2, pp. 545–551, 2019.
[64] O. Borodin, J. Self, K. A. Persson, C. Wang, and K. Xu, “Uncharted Waters: Super-Concentrated Electrolytes,” Joule, vol. 4, no. 1, pp. 69–100, 2020, doi: 10.1016/j.joule.2019.12.007.
[65] C. Blawert and P. Bala Srinivasan, “Plasma electrolytic oxidation treatment of magnesium alloys,” Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys, pp. 155–183, 2010, doi: 10.1533/9781845699451.2.155.
[66] A. K. Sharma, “Anodizing titanium for space applications,” Thin Solid Films, vol. 208, no. 1, pp. 48–54, 1992, doi: 10.1016/0040-6090(92)90946-9.
[67] P. Molitor, V. Barron, and T. Young, “Surface treatment of titanium for adhesive bonding to polymer composites: A review,” International Journal of Adhesion and Adhesives, vol. 21, no. 2, pp. 129–136, 2001, doi: 10.1016/S0143-7496(00)00044-0.
[68] S. Bhowmik, R. Benedictus, J. A. Poulis, H. W. Bonin, and V. T. Bui, “High-performance nanoadhesive bonding of titanium for aerospace and space applications,” International Journal of Adhesion and Adhesives, vol. 29, no. 3, pp. 259–267, 2009, doi: 10.1016/j.ijadhadh.2008.07.002.
[69] D. Souza, “( 12 ) United States Patent r / re O f,” vol. 2, no. 12, pp. 1–7, 2003.
[70] S. Junus et al., “Effect of current, time, ethanol concentration, and pH electrolyte on ZnO coated carbon fiber using electrochemical deposition method,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 105–113, 2023, doi: 10.31603/mesi.10493.
[71] S. Yeniyol et al., “Antibacterial activity of As-annealed TiO2 nanotubes doped with Ag nanoparticles against periodontal pathogens,” Bioinorganic Chemistry and Applications, vol. 2014, 2014, doi: 10.1155/2014/829496.
[72] A. Gao et al., “The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts,” Biomaterials, vol. 35, no. 13, pp. 4223–4235, 2014, doi: 10.1016/j.biomaterials.2014.01.058.
[73] J. Liu, D. A. Sonshine, S. Shervani, and R. H. Hurt, “Controlled Release of Biologically Active Silver from Nanosilver Surfaces,” ACS Nano, vol. 4, no. 11, pp. 6903–6913, Nov. 2010, doi: 10.1021/nn102272n.
[74] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 662–668, 2000, doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.

Most read articles by the same author(s)