A Review on nanolubricant for refrigeration systems: Stability, thermophysical properties, and performance characteristics

Main Article Content

Galang Sandy Prayogo
https://orcid.org/0000-0001-9768-6130
Rizalman Mamat
Mohd. Fairusham Ghazali
Agus Nugroho
Muhammad Kozin
Jackly Muriban

Abstract

Many researchers have introduced nanolubricants in the field of refrigeration systems to improve performance. Nevertheless, academic literature lacks comprehensive explanations of the impact of nanoparticles on the physical phenomena that influence the refrigeration system. Several factors such as stability, agglomeration, and distribution can significantly affect the sustainability of performance. Hence, this work provides an analysis of the methods using nanolubricants to improve the performance of refrigeration systems. This study provides a comprehensive analysis of the performance parameters of the refrigeration system, including compressor work and coefficient of performance (COP), when utilizing nanolubricants. The study findings suggest that including nanolubricants in the refrigeration system can enhance the heat transfer coefficient. Hence, nanolubricants are identified as the most promising contenders for enhancing the efficiency of the refrigeration system.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] IIR, “29 IN: The Role of Refrigeration in the Global Economy,” 38th Note on Refrigeration Technologies., no. November, 2019.
[2] V. Nair, A. D. Parekh, and P. R. Tailor, “Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture,” International Journal of Refrigeration, vol. 112, pp. 21–36, 2020, doi: 10.1016/j.ijrefrig.2019.12.009.
[3] B. O. Bolaji, D. O. Bolaji, and S. T. Amosun, “Energy and cooling performance of carbon-dioxide and hydrofluoroolefins blends as eco-friendly substitutes for R410A in air-conditioning systems,” Mechanical Engineering for Society and Industry, vol. 3, no. 1, pp. 35–46, 2023, doi: 10.31603/mesi.8591.
[4] M. Setiyo et al., “Vapor compression refrigeration system with air and water cooled condenser: Analysis of thermodynamic behavior and energy efficiency ratio,” Teknomekanik, vol. 7, no. 2, pp. 112–125, 2024, doi: 10.24036/teknomekanik.v7i2.31972.
[5] F. I. Abam et al., “Thermodynamic modelling of a novel solar-ORC with bottoming ammonia-water absorption cycle (SORCAS) powered by a vapour compression refrigeration condensate for combined cooling and power,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 93–104, Jun. 2023, doi: 10.31603/mesi.10365.
[6] A. Bhattad, J. Sarkar, and P. Ghosh, “Improving the performance of refrigeration systems by using nanofluids: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 82, no. October 2017, pp. 3656–3669, 2018, doi: 10.1016/j.rser.2017.10.097.
[7] W. Duangthongsuk and S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime,” Int J Heat Mass Transf, vol. 53, no. 1–3, pp. 334–344, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.09.024.
[8] O. A. Alawi, N. A. C. Sidik, and M. Beriache, “Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review,” International Communications in Heat and Mass Transfer, vol. 68, pp. 91–97, 2015, doi: 10.1016/j.icheatmasstransfer.2015.08.014.
[9] J. Wang, X. Yang, J. J. Klemeš, K. Tian, T. Ma, and B. Sunden, “A review on nanofluid stability: preparation and application,” Renewable and Sustainable Energy Reviews, vol. 188, no. November 2022, 2023, doi: 10.1016/j.rser.2023.113854.
[10] Safril, W. H. Azmi, N. N. M. Zawawi, and A. I. Ramadhan, “Tribology Performance of TiO2-SiO2/PVE Nanolubricant at Various Binary Ratios for the Automotive Air-conditioning System,” Automotive Experiences, vol. 6, no. 3, pp. 485–496, Nov. 2023, doi: 10.31603/ae.10255.
[11] N. N. M. Zawawi, W. H. Azmi, M. F. Ghazali, and A. I. Ramadhan, “Performance Optimization of Automotive Air-Conditioning System Operating with Al2O3-SiO2/PAG Composite Nanolubricants using Taguchi Method,” Automotive Experiences, vol. 5, no. 2, pp. 121–136, May 2022, doi: 10.31603/ae.6215.
[12] M. W. Bhat, G. Vyas, A. J. Jaffri, and R. S. Dondapati, “Investigation on the thermophysical properties of Al2O3, Cu and SiC based Nano-refrigerants,” Mater Today Proc, vol. 5, no. 14, pp. 27820–27827, 2018, doi: 10.1016/j.matpr.2018.10.018.
[13] H. Machmouchi and R. Pillai, “Analysis of novel refrigeration systems performance with and without nanoparticles,” International Journal of Energy Production and Management, vol. 6, no. 3, pp. 306–316, 2021, doi: 10.2495/EQ-V6-N3-306-316.
[14] Z. Said, S. M. A. Rahman, and M. A. Sohail, “Single-Walled Carbon Nanotubes (SWCNTs) nanoparticles for R134a and R152a refrigerants evaluating thermophysical properties and COP,” Proceedings of the 2022 International Conference and Utility Exhibition on Energy, Environment and Climate Change, ICUE 2022, no. October, pp. 1–6, 2022, doi: 10.1109/ICUE55325.2022.10113465.
[15] U. S. Prasad, R. S. Mishra, and R. K. Das, “Study of vapor compression refrigeration system with suspended nanoparticles in the low GWP refrigerant,” Environmental Science and Pollution Research, vol. 31, no. 1, pp. 1–26, 2024, doi: 10.1007/s11356-023-30596-4.
[16] L. S. Sundar, A. M. Alklaibi, K. V. V. C. Mouli, and D. Balakrishnan, “Heat transfer coefficient and thermal performance of heat pipe with R134a/mineral oil nanodiamond+Fe3O4 hybrid nanorefrigerant,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 237, no. 23, pp. 5755–5766, Mar. 2023, doi: 10.1177/09544062231163493.
[17] M. Z. Sharif, W. H. Azmi, A. A. M. Redhwan, R. Mamat, and G. Najafi, “Energy saving in automotive air conditioning system performance using SiO 2 /PAG nanolubricants,” J Therm Anal Calorim, vol. 135, no. 2, pp. 1285–1297, Jan. 2019, doi: 10.1007/s10973-018-7728-3.
[18] M. Sandhya et al., “A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties,” Sustainable Energy Technologies and Assessments, vol. 44, no. December 2020, p. 101058, 2021, doi: 10.1016/j.seta.2021.101058.
[19] N. Sezer, M. A. Atieh, and M. Koç, “A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids,” Powder Technol, vol. 344, pp. 404–431, 2019, doi: 10.1016/j.powtec.2018.12.016.
[20] S. B. Canever, M. M. Martins, L. L. Evangelista, C. Binder, and D. Hotza, “Enhancing stability and rheological behavior of nanolubricants for hermetic compressor bearings,” J Mol Liq, vol. 416, Dec. 2024, doi: 10.1016/j.molliq.2024.126501.
[21] S. Bobbo, L. Fedele, M. Fabrizio, S. Barison, S. Battiston, and C. Pagura, “Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility,” International Journal of Refrigeration, vol. 33, no. 6, pp. 1180–1186, 2010, doi: 10.1016/j.ijrefrig.2010.04.009.
[22] M. Z. Sharif, W. H. Azmi, A. A. M. Redhwan, R. Mamat, and T. M. Yusof, “Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system,” International Journal of Refrigeration, vol. 75, pp. 204–216, 2017, doi: 10.1016/j.ijrefrig.2017.01.004.
[23] W. H. Azmi, M. Z. Sharif, T. M. Yusof, R. Mamat, and A. A. M. Redhwan, “Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review,” Renewable and Sustainable Energy Reviews, vol. 69, no. October 2016, pp. 415–428, 2017, doi: 10.1016/j.rser.2016.11.207.
[24] G. Yıldız, Ü. Ağbulut, and A. E. Gürel, “A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems,” Sep. 01, 2021, Elsevier Ltd. doi: 10.1016/j.ijrefrig.2021.05.016.
[25] A. R. I. Ali and B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application,” SN Appl Sci, vol. 2, no. 10, pp. 1–17, 2020, doi: 10.1007/s42452-020-03427-1.
[26] M. Mohammadpoor, S. Sabbaghi, M. M. Zerafat, and Z. Manafi, “Investigating heat transfer properties of copper nanofluid in ethylene glycol synthesized through single and two-step routes,” International Journal of Refrigeration, vol. 99, pp. 243–250, 2019, doi: 10.1016/j.ijrefrig.2019.01.012.
[27] B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998, doi: 10.1080/08916159808946559.
[28] N. A. C. Sidik, H. A. Mohammed, O. A. Alawi, and S. Samion, “A review on preparation methods and challenges of nanofluids,” International Communications in Heat and Mass Transfer, vol. 54, pp. 115–125, 2014, doi: 10.1016/j.icheatmasstransfer.2014.03.002.
[29] E. K. Goharshadi, Y. Ding, M. N. Jorabchi, and P. Nancarrow, “Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2],” Ultrason Sonochem, vol. 16, no. 1, pp. 120–123, 2009, doi: 10.1016/j.ultsonch.2008.05.017.
[30] A. Asadi et al., “Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review,” Powder Technol, vol. 352, pp. 209–226, 2019, doi: 10.1016/j.powtec.2019.04.054.
[31] M. Hatami and D. Jing, “Introduction to nanofluids,” 2020. doi: 10.1016/b978-0-08-102933-6.00001-9.
[32] H. Babar and H. M. Ali, “Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges,” J Mol Liq, vol. 281, pp. 598–633, 2019, doi: 10.1016/j.molliq.2019.02.102.
[33] Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol, vol. 196, no. 2, pp. 89–101, 2009, doi: 10.1016/j.powtec.2009.07.025.
[34] M. S. Liu, M. C. C. Lin, C. Y. Tsai, and C. C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” Int J Heat Mass Transf, vol. 49, no. 17–18, pp. 3028–3033, 2006, doi: 10.1016/j.ijheatmasstransfer.2006.02.012.
[35] S. Chakraborty and P. K. Panigrahi, “Stability of nanofluid: A review,” Appl Therm Eng, vol. 174, no. December 2019, 2020, doi: 10.1016/j.applthermaleng.2020.115259.
[36] S. Aberoumand and A. Jafarimoghaddam, “Tungsten (III) oxide (WO3) – Silver/transformer oil hybrid nanofluid: Preparation, stability, thermal conductivity and dielectric strength,” Alexandria Engineering Journal, vol. 57, no. 1, pp. 169–174, 2018, doi: 10.1016/j.aej.2016.11.003.
[37] J. Patel, A. Soni, D. P. Barai, and B. A. Bhanvase, “A minireview on nanofluids for automotive applications: Current status and future perspectives,” Appl Therm Eng, vol. 219, no. PA, p. 119428, 2023, doi: 10.1016/j.applthermaleng.2022.119428.
[38] W. Yu and H. Xie, “A review on nanofluids: Preparation, stability mechanisms, and applications,” J Nanomater, vol. 2012, 2012, doi: 10.1155/2012/435873.
[39] B. Bakthavatchalam, K. Habib, R. Saidur, B. B. Saha, and K. Irshad, “Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective,” J Mol Liq, vol. 305, p. 112787, 2020, doi: 10.1016/j.molliq.2020.112787.
[40] M. U. Sajid and H. M. Ali, “Thermal conductivity of hybrid nanofluids: A critical review,” Int J Heat Mass Transf, vol. 126, pp. 211–234, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.05.021.
[41] M. H. Fakhar, A. Fakhar, and H. Tabatabaei, “Mathematical modeling of pipes reinforced by agglomerated CNTs conveying turbulent nanofluid and application of semi-analytical method for studying the instable Nusselt number and fluid velocity,” J Comput Appl Math, vol. 378, p. 112945, 2020, doi: 10.1016/j.cam.2020.112945.
[42] M. Borzuei and Z. Baniamerian, “Role of nanoparticles on critical heat flux in convective boiling of nanofluids: Nanoparticle sedimentation and Brownian motion,” Int J Heat Mass Transf, vol. 150, p. 119299, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.119299.
[43] Y. Ueki, T. Oyabu, and M. Shibahara, “Experimental study of influence of nanoparticles adhesion and sedimentation layer on solid-liquid interfacial thermal resistance,” International Communications in Heat and Mass Transfer, vol. 117, no. August, p. 104807, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104807.
[44] A. E. Bayat, K. Rajaei, and R. Junin, “Assessing the effects of nanoparticle type and concentration on the stability of CO2 foams and the performance in enhanced oil recovery,” Colloids Surf A Physicochem Eng Asp, vol. 511, pp. 222–231, 2016, doi: 10.1016/j.colsurfa.2016.09.083.
[45] C. T. Nguyen et al., “Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon,” Int J Heat Fluid Flow, vol. 28, no. 6, pp. 1492–1506, 2007, doi: 10.1016/j.ijheatfluidflow.2007.02.004.
[46] H. J. Kim, S. H. Lee, J. H. Lee, and S. P. Jang, “Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids,” Energy, vol. 90, pp. 1290–1297, 2015, doi: 10.1016/j.energy.2015.06.084.
[47] D. Zheng, J. Wang, Z. Chen, J. Baleta, and B. Sundén, “Performance analysis of a plate heat exchanger using various nanofluids,” Int J Heat Mass Transf, vol. 158, p. 119993, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119993.
[48] S. Umar, F. Sulaiman, N. Abdullah, and S. N. Mohamad, “Investigation of the effect of pH adjustment on the stability of nanofluid,” AIP Conf Proc, vol. 2031, no. March 2003, 2018, doi: 10.1063/1.5066987.
[49] H. W. Xian, N. A. C. Sidik, and R. Saidur, “Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids,” International Communications in Heat and Mass Transfer, vol. 110, no. November 2019, 2020, doi: 10.1016/j.icheatmasstransfer.2019.104389.
[50] Y. Wang, C. Zou, W. Li, Y. Zou, and H. Huang, “Improving stability and thermal properties of TiO2 nanofluids by supramolecular modification: high energy efficiency heat transfer medium for data center cooling system,” Int J Heat Mass Transf, vol. 156, p. 119735, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119735.
[51] M. R. Salem, “Performance enhancement of a vapor compression refrigeration system using R134a/MWCNT-oil mixture and liquid-suction heat exchanger equipped with twisted tape turbulator,” International Journal of Refrigeration, vol. 120, pp. 357–369, 2020, doi: 10.1016/j.ijrefrig.2020.09.009.
[52] Yogesh Joshi, Dinesh Zanwar, and Sandeep Joshi, “Performance investigation of vapor compression refrigeration system using R134a and R600a refrigerants and Al2O3nanoparticle based suspension,” Mater Today Proc, vol. 44, pp. 1511–1519, 2021, doi: 10.1016/j.matpr.2020.11.732.
[53] Y. qiang Feng et al., “Experimental investigation on stability and evaluation of nanorefrigerant applied on organic Rankine cycle system,” Appl Therm Eng, vol. 236, Jan. 2024, doi: 10.1016/j.applthermaleng.2023.121683.
[54] M. Z. Sharif, W. H. Azmi, A. A. M. Redhwan, and R. Mamat, “Étude de la conductivité thermique et de la viscosité de nanolubrifiant Al2O3/PAG appliqué au système de conditionnement d’air d’automobile,” International Journal of Refrigeration, vol. 70, pp. 93–102, 2016, doi: 10.1016/j.ijrefrig.2016.06.025.
[55] N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and K. V. Sharma, “Propriétés thermo-physiques du nanolubrifiant composite Al2O3-SiO2/PAG pour les systèmes frigorifiques,” International Journal of Refrigeration, vol. 80, pp. 1–10, 2017, doi: 10.1016/j.ijrefrig.2017.04.024.
[56] S. S. Chauhan, R. Kumar, and S. P. S. Rajput, “Performance investigation of ice plant working with R134a and different concentrations of POE/TiO2 nanolubricant using experimental method,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 4, pp. 1–10, 2019, doi: 10.1007/s40430-019-1657-3.
[57] S. Narayanasarma and B. T. Kuzhiveli, “Evaluation of the properties of POE/SiO2 nanolubricant for an energy-efficient refrigeration system – An experimental assessment,” Powder Technol, vol. 356, pp. 1029–1044, 2019, doi: 10.1016/j.powtec.2019.09.024.
[58] A. Nugroho, R. Mamat, J. Xiaoxia, Z. Bo, M. F. Jamlos, and M. F. Ghazali, “Performance enhancement and optimization of residential air conditioning system in response to the novel FAl2O3-POE nanolubricant adoption,” Heliyon, vol. 9, no. 10, 2023, doi: 10.1016/j.heliyon.2023.e20333.
[59] D. F. Marcucci Pico, L. R. R. da Silva, O. S. Hernandez Mendoza, and E. P. Bandarra Filho, “Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32,” Int J Heat Mass Transf, vol. 152, p. 119493, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119493.
[60] S. S. Sanukrishna and M. J. Prakash, “Exploiting the thermal and rheological potentials of graphene-PAG nanolubricant for the development of energy efficient refrigeration systems,” Mater Today Proc, vol. 59, pp. 7–14, 2022, doi: 10.1016/j.matpr.2021.09.471.
[61] S. S. Sanukrishna and M. Jose Prakash, “Experimental studies on thermal and rheological behaviour of TiO2-PAG nanolubricant for refrigeration system,” International Journal of Refrigeration, vol. 86, pp. 356–372, 2018, doi: 10.1016/j.ijrefrig.2017.11.014.
[62] G. Jatinder et al., “Performance of a domestic refrigerator using selected hydrocarbon working fluids and TiO2–MO nanolubricant,” Appl Therm Eng, vol. 160, no. February, 2019, doi: 10.1016/j.applthermaleng.2019.114004.
[63] V. Mikkola, S. Puupponen, H. Granbohm, K. Saari, T. Ala-Nissila, and A. Seppälä, “Influence of particle properties on convective heat transfer of nanofluids,” International Journal of Thermal Sciences, vol. 124, no. October 2017, pp. 187–195, 2018, doi: 10.1016/j.ijthermalsci.2017.10.015.
[64] M. S. Patil, S. C. Kim, J. H. Seo, and M. Y. Lee, “Review of the thermo-physical properties and performance characteristics of a refrigeration system using refrigerant-based nanofluids,” Energies (Basel), vol. 9, no. 1, 2016, doi: 10.3390/en9010022.
[65] V. Nair, P. R. Tailor, and A. D. Parekh, “Nanorefrigerants: A comprehensive review on its past, present and future,” International Journal of Refrigeration, vol. 67, pp. 290–307, 2016, doi: 10.1016/j.ijrefrig.2016.01.011.
[66] S. S. Sanukrishna, M. Murukan, and P. M. Jose, “État des lieux des études expérimentales sur les nanofrigorigènes: Recherches récentes, développement et utilisations,” International Journal of Refrigeration, vol. 88, pp. 552–577, 2018, doi: 10.1016/j.ijrefrig.2018.03.013.
[67] I. M. Mahbubul, R. Saidur, and M. A. Amalina, “Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid,” Procedia Eng, vol. 56, pp. 310–315, 2013, doi: 10.1016/j.proeng.2013.03.124.
[68] A. Asadi et al., “Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review,” Ultrason Sonochem, vol. 58, no. July, 2019, doi: 10.1016/j.ultsonch.2019.104701.
[69] A. Nugroho, Z. Bo, R. Mamat, W. H. Azmi, G. Najafi, and F. Khoirunnisa, “Extensive examination of sonication duration impact on stability of Al2O3-Polyol ester nanolubricant,” International Communications in Heat and Mass Transfer, vol. 126, 2021, doi: 10.1016/j.icheatmasstransfer.2021.105418.
[70] Z. Said, S. M. A. Rahman, M. A. Sohail, and B. B S, “Analysis of thermophysical properties and performance of nanorefrigerants and nanolubricant-refrigerant mixtures in refrigeration systems,” Case Studies in Thermal Engineering, vol. 49, no. March, p. 103274, 2023, doi: 10.1016/j.csite.2023.103274.
[71] S. S. Sanukrishna and M. Jose Prakash, “Experimental studies on thermal and rheological behaviour of TiO2-PAG nanolubricant for refrigeration system,” International Journal of Refrigeration, vol. 86, pp. 356–372, 2018, doi: 10.1016/j.ijrefrig.2017.11.014.
[72] N. F. Aljuwayhel, N. Ali, S. A. Ebrahim, and A. M. Bahman, “Experimental investigation of thermophysical properties, tribological properties and dispersion stability of nanodiamond-based nanolubricant for air conditioning systems,” International Journal of Refrigeration, vol. 145, no. March 2022, pp. 325–337, 2023, doi: 10.1016/j.ijrefrig.2022.09.022.
[73] D. M. Madyira, T. O. Babarinde, and P. M. Mashinini, “Performance improvement of R600a with graphene nanolubricant in a domestic refrigerator as a potential substitute for R134a,” Fuel Communications, vol. 10, no. July 2021, p. 100034, 2022, doi: 10.1016/j.jfueco.2021.100034.
[74] Y. Joshi, D. Zanwar, and V. Gupta, “Influence of nanoparticle concentration on thermophysical properties and heat transfer performance of Al2O3 nanosuspension for refrigeration system,” Mater Today Proc, vol. 56, pp. 995–1000, 2022, doi: 10.1016/j.matpr.2022.03.227.
[75] Y. G. Joshi, D. Zanwar, V. Gupta, P. N. Dhandale, A. Patil, and A. Kudawale, “Synthesis and performance investigation of novel graphene nanoplatelets-based nanosuspension in PAG and MO refrigeration lubricants,” Mater Today Proc, no. August, pp. 2–7, 2023, doi: 10.1016/j.matpr.2023.08.167.
[76] G. Jatinder et al., “Performance of a domestic refrigerator using selected hydrocarbon working fluids and TiO2–MO nanolubricant,” Appl Therm Eng, vol. 160, no. February, 2019, doi: 10.1016/j.applthermaleng.2019.114004.
[77] O. A. Alawi, J. M. Salih, and A. R. Mallah, “Thermo-physical properties effectiveness on the coefficient of performance of Al 2 O 3 /R141b nano-refrigerant,” International Communications in Heat and Mass Transfer, vol. 103, no. March, pp. 54–61, 2019, doi: 10.1016/j.icheatmasstransfer.2019.02.011.
[78] I. M. Alarifi, A. B. Alkouh, V. Ali, H. M. Nguyen, and A. Asadi, “On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: An experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles,” Powder Technol, vol. 355, pp. 157–162, 2019, doi: 10.1016/j.powtec.2019.07.039.
[79] S. M. S. Murshed and P. Estellé, “A state of the art review on viscosity of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 76, no. March, pp. 1134–1152, 2017, doi: 10.1016/j.rser.2017.03.113.
[80] D. A. Simpson, Surface Engineering Concepts. 2017. doi: 10.1016/b978-0-12-813022-3.00004-3.
[81] L. Yang, W. Ji, M. Mao, and J. nan Huang, “An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects,” J Clean Prod, vol. 257, p. 120408, 2020, doi: 10.1016/j.jclepro.2020.120408.
[82] J. P. Meyer, S. A. Adio, M. Sharifpur, and P. N. Nwosu, “The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models,” Heat Transfer Engineering, vol. 37, no. 5, pp. 387–421, 2016, doi: 10.1080/01457632.2015.1057447.
[83] P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, D. A. Kessler, and K. Annamalai, “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids,” Int J Heat Mass Transf, vol. 52, no. 21–22, pp. 5090–5101, 2009, doi: 10.1016/j.ijheatmasstransfer.2009.04.029.
[84] G. K. Ghosh et al., “A multi-faceted review on industrial grade nanolubricants: Applications and rheological insights with global market forecast,” Mar. 01, 2025, Elsevier B.V. doi: 10.1016/j.rineng.2024.103628.
[85] K. V. Raghavulu and N. G. Rasu, “an Experimental Study on the Improvement of Coefficient of Performance in Vapor Compression Refrigeration System Using Graphene Lubricant Additives,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 00, no. 00, pp. 1–17, 2021, doi: 10.1080/15567036.2021.1909186.
[86] M. F. Ismail, W. H. Azmi, R. Mamat, and A. H. Hamisa, “Experimental Investigation on Newtonian Behaviour and Viscosity of TiO2/PVE Nanolubricants for Application in Refrigeration System,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 92, no. 1, pp. 9–17, 2022, doi: 10.37934/arfmts.92.1.917.
[87] R. Harichandran, P. Paulraj, S. Maha Pon Raja, and J. Kalyana Raman, “Effect of h-BN solid nanolubricant on the performance of R134a–polyolester oil-based vapour compression refrigeration system,” 2019. doi: 10.1007/s40430-019-1645-7.
[88] N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and K. V. Sharma, “Propriétés thermo-physiques du nanolubrifiant composite Al2O3-SiO2/PAG pour les systèmes frigorifiques,” International Journal of Refrigeration, vol. 80, pp. 1–10, 2017, doi: 10.1016/j.ijrefrig.2017.04.024.
[89] A. S. Dalkilic et al., “Experimental Study on the Stability and Viscosity for the Blends of Functionalized MWCNTs with Refrigeration Compressor Oils,” Curr Nanosci, vol. 14, no. 3, pp. 216–226, 2017, doi: 10.2174/1573413713666171109154924.
[90] N. F. Aljuwayhel, N. Ali, S. A. Ebrahim, and A. M. Bahman, “Experimental investigation of thermophysical properties, tribological properties and dispersion stability of nanodiamond-based nanolubricant for air conditioning systems,” International Journal of Refrigeration, vol. 145, no. March 2022, pp. 325–337, 2023, doi: 10.1016/j.ijrefrig.2022.09.022.
[91] S. S. Sanukrishna and V. M. Jose, “Evaluation of thermal and rheological characteristics of CNT-PAG nanolubricant for the development of energy efficient refrigeration systems,” Mater Today Proc, vol. 58, pp. 114–120, 2022, doi: 10.1016/j.matpr.2022.01.080.
[92] M. Z. Sharif, W. H. Azmi, M. F. Ghazali, N. N. M. Zawawi, and H. M. Ali, “Viscosity and Friction Reduction of Double-End-Capped Polyalkylene Glycol Nanolubricants for Eco-Friendly Refrigerant,” Lubricants, vol. 11, no. 3, 2023, doi: 10.3390/lubricants11030129.
[93] N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and K. V. Sharma, “Propriétés thermo-physiques du nanolubrifiant composite Al2O3-SiO2/PAG pour les systèmes frigorifiques,” International Journal of Refrigeration, vol. 80, pp. 1–10, 2017, doi: 10.1016/j.ijrefrig.2017.04.024.
[94] C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, “Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study,” International Journal of Thermal Sciences, vol. 49, no. 8, pp. 1345–1353, 2010, doi: 10.1016/j.ijthermalsci.2010.02.013.
[95] J. M. Liñeira del Río, M. J. G. Guimarey, M. J. P. Comuñas, E. R. López, A. Amigo, and J. Fernández, “Thermophysical and tribological properties of dispersions based on graphene and a trimethylolpropane trioleate oil,” J Mol Liq, vol. 268, pp. 854–866, 2018, doi: 10.1016/j.molliq.2018.07.107.
[96] K. I. Nasser, J. M. Liñeira del Río, E. R. López, and J. Fernández, “Synergistic effects of hexagonal boron nitride nanoparticles and phosphonium ionic liquids as hybrid lubricant additives,” J Mol Liq, vol. 311, p. 113343, 2020, doi: 10.1016/j.molliq.2020.113343.
[97] R. Walvekar, A. Singh, M. Khalid, T. Gupta, and W. W. Yin, “Thermophysical properties of deep eutectic solvent-carbon nanotubes (DES-CNT) based nanolubricant,” Journal of Thermal Engineering, vol. 6, no. 2, pp. 53–64, 2020, doi: 10.18186/THERMAL.726059.
[98] O. A. Alawi, J. M. Salih, and A. R. Mallah, “Thermo-physical properties effectiveness on the coefficient of performance of Al 2 O 3 /R141b nano-refrigerant,” International Communications in Heat and Mass Transfer, vol. 103, no. March, pp. 54–61, 2019, doi: 10.1016/j.icheatmasstransfer.2019.02.011.
[99] J. U. Ahamed, R. Saidur, and H. H. Masjuki, “A review on exergy analysis of vapor compression refrigeration system,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1593–1600, 2011, doi: 10.1016/j.rser.2010.11.039.
[100] W. Jiang, G. Ding, and H. Peng, “Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants,” International Journal of Thermal Sciences, vol. 48, no. 6, pp. 1108–1115, 2009, doi: 10.1016/j.ijthermalsci.2008.11.012.
[101] M. Z. Sharif, W. H. Azmi, R. Mamat, and A. I. M. Shaiful, “Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants – A review,” International Communications in Heat and Mass Transfer, vol. 92, no. February, pp. 56–63, 2018, doi: 10.1016/j.icheatmasstransfer.2018.02.012.
[102] R. Saidur, K. Y. Leong, and H. A. Mohammed, “A review on applications and challenges of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1646–1668, 2011, doi: 10.1016/j.rser.2010.11.035.
[103] A. M. A. Soliman, S. H. Taher, A. K. Abdel-Rahman, and S. Ookawara, “Performance enhancement of vapor compression cycle using nano materials,” 2015 International Conference on Renewable Energy Research and Applications, ICRERA 2015, vol. 5, pp. 821–826, 2015, doi: 10.1109/ICRERA.2015.7418526.
[104] D. F. Marcucci Pico, L. R. R. da Silva, P. S. Schneider, and E. P. Bandarra Filho, “Performance evaluation of diamond nanolubricants applied to a refrigeration system,” International Journal of Refrigeration, vol. 100, pp. 104–112, 2019, doi: 10.1016/j.ijrefrig.2018.12.009.
[105] A. A. M. Redhwan, W. H. Azmi, M. Z. Sharif, N. N. M. Zawawi, O. W. Zulkarnain, and A. R. M. Aminullah, “The effect of Al2O3/PAG nanolubricant towards automotive air conditioning (AAC) power consumption,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/863/1/012056.
[106] N. N. M. Zawawi, W. H. Azmi, and M. F. Ghazali, “Performance of Al2O3-SiO2/PAG composite nanolubricants in automotive air-conditioning system,” Appl Therm Eng, vol. 204, no. December 2021, p. 117998, 2022, doi: 10.1016/j.applthermaleng.2021.117998.
[107] O. S. Ohunakin, D. S. Adelekan, T. O. Babarinde, R. O. Leramo, F. I. Abam, and C. D. Diarra, “Experimental investigation of TiO2-, SiO2- and Al2O3-lubricants for a domestic refrigerator system using LPG as working fluid,” Appl Therm Eng, vol. 127, no. 2017, pp. 1469–1477, 2017, doi: 10.1016/j.applthermaleng.2017.08.153.
[108] D. S. Adelekan et al., “Performance of a domestic refrigerator in varying ambient temperatures, concentrations of TiO2 nanolubricants and R600a refrigerant charges,” Heliyon, vol. 7, no. 2, p. e06156, 2021, doi: 10.1016/j.heliyon.2021.e06156.
[109] N. F. Aljuwayhel, N. Ali, and A. M. Bahman, “Experimental evaluation of split air conditioning performance using nanodiamonds particles in compressor polyester lubricant oil,” Appl Therm Eng, vol. 231, no. March, p. 120961, 2023, doi: 10.1016/j.applthermaleng.2023.120961.
[110] A. Senthilkumar et al., “Enhancement of R600a vapour compression refrigeration system with MWCNT/TiO2 hybrid nano lubricants for net zero emissions building,” Sustainable Energy Technologies and Assessments, vol. 56, no. August 2022, 2023, doi: 10.1016/j.seta.2023.103055.
[111] L. Lin, H. Peng, Z. Chang, and G. Ding, “Recherche expérimentale sur la dégradation d’un mélange nanolubrifiant-frigorigène durant les processus d’alternance continue de condensation et d’évaporation,” International Journal of Refrigeration, vol. 76, pp. 97–108, 2017, doi: 10.1016/j.ijrefrig.2016.12.021.
[112] L. Lin, H. Peng, and G. Ding, “Experimental research on particle aggregation behavior in nanorefrigerant-oil mixture,” Appl Therm Eng, vol. 98, pp. 944–953, 2016, doi: 10.1016/j.applthermaleng.2015.12.052.
[113] M. Z. Sharif, W. H. Azmi, A. A. M. Redhwan, R. Mamat, and T. M. Yusof, “Analyse de la performance du nanolubrifiant SiO2/PAG dans un système de conditionnement d’air automobile,” International Journal of Refrigeration, vol. 75, pp. 204–216, 2017, doi: 10.1016/j.ijrefrig.2017.01.004.
[114] T. K. Tran et al., “Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment,” Feb. 20, 2024, Elsevier B.V. doi: 10.1016/j.scitotenv.2023.169331.
[115] M. Romero-Franco, H. A. Godwin, M. Bilal, and Y. Cohen, “Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs),” Beilstein Journal of Nanotechnology, vol. 8, no. 1, pp. 989–1014, May 2017, doi: 10.3762/bjnano.8.101.
[116] S. Wong and B. Karn, “Ensuring sustainability with green nanotechnology,” 2012. doi: 10.1088/0957-4484/23/29/290201.
[117] B. D. Trump et al., “Safety-by-design and engineered nanomaterials: the need to move from theory to practice,” Environ Syst Decis, vol. 44, no. 1, pp. 177–188, Mar. 2024, doi: 10.1007/s10669-023-09927-w.