The analysis of semiconducting charateristic of rice husk-based carbon nanomaterial bio-activated by pineapple peel juice

Main Article Content

Ni Made Dwidiani
https://orcid.org/0009-0002-5277-1635
Ngakan Putu Gede Suardana
https://orcid.org/0000-0002-8146-571X
I Nyoman Gede Wardana
https://orcid.org/0009-0002-5277-1635
Willy Satrio Nugroho
https://orcid.org/0000-0001-8288-6287
I Gusti Ketut Puja
https://orcid.org/0000-0002-6025-3865
Wayan Nata Septiadi
https://orcid.org/0000-0003-3121-9542
I Gusti Ngurah Nitya Santhiarsa
http://orcid.org/0000-0002-8146-571X
Si Putu Gede Gunawan Tista
https://orcid.org/0000-0002-7562-6644

Abstract

This study investigates the synthesis and characterization of semiconducting materials derived from rice husk bio-activated by pineapple peel juice, presenting an eco-friendly and sustainable approach. The organic photo-active semiconducting material from rice husk ash (RHA) is synthesized. RHA was activated by immersion in the pineapple juice solution. Distinct structural disparities among RHA, Sunken Carbon nanomaterial (SCNM), and Floating Carbon Nanomaterial (FCNM) materials are revealed through SEM imaging, showcasing the tailored nature of each material. The SEM images also indicate the role of bromelain from the pineapple juice to provide defects on the RHA carbon surface. The crack on the nano particles on the surface of SCNM and FCNM were formed due to the bromelain electrostatic interaction with the surface. Elemental analysis indicates a higher probability of CuO and Si presence in SCNM, suggesting its potential for semiconductor extraction. The Cu to Si ratio implies photoactivity, confirmed by UV-Vis characterization showing absorption peaks in the UV region. FTIR analysis highlights enhanced polar interactions in SCNM and FCNM, attributed to the activation process involving bromelain in pineapple juice. The photoelectric effect testing shows FCNM and SCNM generates more electrical current as exposed to light which. The current was generated due to the electron transport phenomenon of CuO and Si content triggered by photons. The study provides insights into the materials' molecular structures and potential applications in sensors, energy devices, and semiconductor-related technologies, leveraging the unique properties of bio-derived nanomaterials for practical implementation.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] C. Liang et al., “Novel semiconductor materials for advanced supercapacitors,” Journal of Materials Chemistry C, vol. 11, no. 13, pp. 4288–4317, 2023, doi: 10.1039/d2tc04816g.
[2] X. Li et al., “Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors,” Nature Communications, vol. 10, no. 1, 2019, doi: 10.1038/s41467-019-08508-3.
[3] R. Soenoko, Purnami, and F. G. Utami Dewi, “Second stage cross flow turbine performance,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 6, 2017.
[4] W. Wijayanti, M. N. Sasongko, and Purnami, “The calorific values of solid and liquid yields consequenced by temperatures of mahogany pyrolysis,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 2, pp. 917–921, 2016.
[5] X. Hu, G. Li, and J. C. Yu, “Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications,” Langmuir, vol. 26, no. 5, pp. 3031–3039, 2010, doi: 10.1021/la902142b.
[6] B. Q. G. Le and T. L. H. Doan, “Trend in biodegradable porous nanomaterials for anticancer drug delivery,” WIREs Nanomedicine and Nanobiotechnology, vol. 15, no. 4, p. e1874, Jul. 2023, doi: 10.1002/wnan.1874.
[7] N. Baig, “Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions,” Composites Part A: Applied Science and Manufacturing, vol. 165, p. 107362, Feb. 2023, doi: 10.1016/j.compositesa.2022.107362.
[8] Y. Wei, L. Zou, H. Wang, Y. Wang, and Q. Xu, “Micro/Nano‐Scaled Metal‐Organic Frameworks and Their Derivatives for Energy Applications,” Advanced Energy Materials, vol. 12, no. 4, p. 2003970, Jan. 2022, doi: 10.1002/aenm.202003970.
[9] J. Sans, L. Soler, M. Domínguez, and J. Llorca, “Transforming a Compact Disk into a Simple and Cheap Photocatalytic Nanoreactor,” ACS Omega, vol. 3, no. 6, pp. 6971–6975, Jun. 2018, doi: 10.1021/acsomega.8b00739.
[10] P. Purnami, N. Willy Satrio, S. Supriyono, and I. N. G. Wardana, “Digitally controlled organic electrocatalyst for water electrolysis,” International Journal of Hydrogen Energy, vol. 47, no. 23, pp. 11877–11893, Mar. 2022, doi: 10.1016/j.ijhydene.2022.01.203.
[11] A. H. Holtslag, E. F. Mc Cord, and G. H. Werumeusbuning, “Recording mechanism of overcoated metallized dye layers on polycarbonate substrates,” Japanese Journal of Applied Physics, vol. 31, no. 2S, pp. 484–493, 1992, doi: 10.1143/JJAP.31.484.
[12] S. Mas’ud, A. M. Sulaiman, H. Syahputra, and P. Purnami, “the Effect of Addition Bisphenol-a-Polycarbonate From Cd-R Waste As a Catalyst for Hydrogen Production,” International Journal of Mechanical Engineering Technologies and Applications, vol. 4, no. 2, pp. 104–116, 2023, doi: 10.21776/mechta.2023.004.02.1.
[13] A. M. Sulaiman, S. Mas’ud, A. N. Daroini, and P. Purnami, “the Effect of Electrode Coating From Bisphenol-a-Polycarbonate Cd-R Waste for Hydrogen Production,” International Journal of Mechanical Engineering Technologies and Applications, vol. 4, no. 1, pp. 10–21, Jan. 2023, doi: 10.21776/mechta.2023.004.01.2.
[14] P. Purnami, W. winarto, Y. K. Sofi’i, W. S. Nugroho, and I. N. G. Wardana, “The enhancement of magnetic field assisted water electrolysis hydrogen production from the compact disc recordable waste polycarbonate layer,” International Journal of Hydrogen Energy, 2023, doi: 10.1016/j.ijhydene.2023.01.329.
[15] W. S. Nugroho, R. R. Esiliy, P. Purnami, and Y. K. Sofi’i, “The impact of chaotic flux reflection field on hydrogen evolution reaction of water electrolysis,” International Journal of Mechanical Engineering Technologies and Applications, vol. 5, no. 1, pp. 12–22, Jan. 2024, doi: 10.21776/mechta.2024.005.01.2.
[16] Z. Chen et al., “A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices,” Nature Communications, vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-32010-y.
[17] U. Shankar, C. R. Gupta, D. Oberoi, B. P. Singh, A. Kumar, and A. Bandyopadhyay, “A facile way to synthesize an intrinsically ultraviolet-C resistant tough semiconducting polymeric glass for organic optoelectronic device application,” Carbon, vol. 168, pp. 485–498, 2020, doi: 10.1016/j.carbon.2020.07.015.
[18] H. B. Lee, W.-Y. Jin, M. M. Ovhal, N. Kumar, and J.-W. Kang, “Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review,” Journal of Materials Chemistry C, vol. 7, no. 5, pp. 1087–1110, 2019, doi: 10.1039/c8tc04423f.
[19] H. Bronstein, C. B. Nielsen, B. C. Schroeder, and I. McCulloch, “The role of chemical design in the performance of organic semiconductors,” Nature Reviews Chemistry, vol. 4, no. 2, pp. 66–77, Jan. 2020, doi: 10.1038/s41570-019-0152-9.
[20] S. Giannini and J. Blumberger, “Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics,” Accounts of Chemical Research, vol. 55, no. 6, pp. 819–830, Mar. 2022, doi: 10.1021/acs.accounts.1c00675.
[21] L. Hu, X. Liu, S. Dalgleish, M. M. Matsushita, H. Yoshikawa, and K. Awaga, “Organic optoelectronic interfaces with anomalous transient photocurrent,” Journal of Materials Chemistry C, vol. 3, no. 20, pp. 5122–5135, 2015, doi: 10.1039/c5tc00414d.
[22] N. M. Dwidiani, N. P. G. Suardana, I. N. G. Wardana, W. N. Septiadi, and A. A. A. Suryawan, “The Prediction of Photoactive Semiconductor Potential of Bio-Activated Rice Husk Ash Using Analytical Method,” Journal of the Chinese Society of Mechanical Engineers, vol. 45, no. 4, pp. 375–383, 2024.
[23] S. Rukzon, P. Chindaprasirt, and R. Mahachai, “Effect of grinding on chemical and physical properties of rice husk ash,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 2, pp. 242–247, Apr. 2009, doi: 10.1016/S1674-4799(09)60041-8.
[24] D. L. Zhang, “Processing of advanced materials using high-energy mechanical milling,” Progress in Materials Science, vol. 49, no. 3–4, pp. 537–560, Jan. 2004, doi: 10.1016/S0079-6425(03)00034-3.
[25] L. C. de Lencastre Novaes, A. F. Jozala, A. M. Lopes, V. de Carvalho Santos-Ebinuma, P. G. Mazzola, and A. Pessoa Junior, “Stability, purification, and applications of bromelain: A review,” Biotechnology Progress, vol. 32, no. 1, pp. 5–13, Jan. 2016, doi: 10.1002/btpr.2190.
[26] L. R. Domingo, “Molecular electron density theory: A modern view of reactivity in organic chemistry,” Molecules, vol. 21, no. 10, 2016, doi: 10.3390/molecules21101319.
[27] A. Borrelli, “The story of the Higgs boson: the origin of mass in early particle physics,” European Physical Journal H, vol. 40, no. 1, pp. 1–52, 2015, doi: 10.1140/epjh/e2014-50026-9.
[28] Z. F. Yao et al., “Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals,” Advanced Materials, vol. 33, no. 10, 2021, doi: 10.1002/adma.202006794.
[29] C. A. Doswell and P. M. Markowski, “Is buoyancy a relative quantity?,” Monthly Weather Review, vol. 132, no. 4, pp. 853–863, 2004, doi: 10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.
[30] C. Vermillion, B. Glass, and A. Rein, “Lighter-than-air wind energy systems,” Green Energy and Technology, pp. 501–514, 2013, doi: 10.1007/978-3-642-39965-7_30.
[31] H. J. Kang, I. Kim, J. Choi, G. J. Lee, and B. J. Park, “A concept study for the buoyancy support system based on the fixed fire-fighting system for damaged ships,” Ocean Engineering, vol. 155, pp. 361–370, 2018, doi: 10.1016/j.oceaneng.2018.02.040.
[32] H. Z. Tan, L. A. Slivovsky, and A. Pentland, “A sensing chair using pressure distribution sensors,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 3, pp. 261–268, 2001, doi: 10.1109/3516.951364.
[33] Y. Ramdhun, M. Mohanta, T. Arunachalam, R. Gupta, and D. Verma, “Bromelain-loaded polyvinyl alcohol–activated charcoal-based film for wound dressing applications,” Macromolecular Research, vol. 31, no. 5, pp. 469–488, May 2023, doi: 10.1007/s13233-023-00119-8.
[34] M. Holyavka et al., “Influence of UV radiation on molecular structure and catalytic activity of free and immobilized bromelain, ficin and papain,” Journal of Photochemistry and Photobiology B: Biology, vol. 201, p. 111681, Dec. 2019, doi: 10.1016/j.jphotobiol.2019.111681.
[35] Y. Fisal, N. Hamidi, and M. N. Sasongko, “Pyrolysis of corn cob biomass toward gaseous products on small capacity reactor,” International Journal of Mechanical Engineering Technologies and Applications, vol. 5, no. 1, pp. 87–95, 2024, doi: 10.21776/mechta.2024.005.01.9.
[36] M. Farid et al., “Phytoremediation of contaminated industrial wastewater by duckweed (Lemna minor L.): Growth and physiological response under acetic acid application,” Chemosphere, vol. 304, p. 135262, Oct. 2022, doi: 10.1016/j.chemosphere.2022.135262.
[37] B. Sürücü, H. H. Güllü, M. Terlemezoglu, D. E. Yildiz, and M. Parlak, “Determination of current transport characteristics in Au-Cu/CuO/n-Si Schottky diodes,” Physica B: Condensed Matter, vol. 570, pp. 246–253, Oct. 2019, doi: 10.1016/j.physb.2019.06.024.
[38] A. A. Sirusi, J. H. Ross, X. Yan, and S. Paschen, “NMR study of Ba8Cu5SixGe41-x clathrate semiconductors,” Physical Chemistry Chemical Physics, vol. 17, no. 26, pp. 16991–16996, Jun. 2015, doi: 10.1039/c5cp02575c.
[39] V. Quaresima and M. Ferrari, “A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go?,” Photonics, vol. 6, no. 3, p. 87, Aug. 2019, doi: 10.3390/photonics6030087.
[40] M. Musyaroh, W. Wijayanti, M. N. Sasongko, and A. D. Rizaldy, “Efek Intermolecular Forces: Perubahan Physical Properties pada Campuran Premium dan Bio-Additive Orange Peel,” Jurnal Rekayasa Mesin, vol. 12, no. 1, p. 133, 2021, doi: 10.21776/ub.jrm.2021.012.01.15.
[41] Y. Keriti, R. Brahimi, Y. Gabes, S. Kaci, and M. Trari, “Physical and photo-electrochemical properties of CuO thin film grown on µc-Si:H/glass. Application to solar energy conversion,” Solar Energy, vol. 206, pp. 787–792, Aug. 2020, doi: 10.1016/j.solener.2020.05.072.
[42] J. G. Kim et al., “Mapping the emergence of molecular vibrations mediating bond formation,” Nature, vol. 582, no. 7813, pp. 520–524, Jun. 2020, doi: 10.1038/s41586-020-2417-3.
[43] M. Lin, H. Chen, Z. Zhang, and X. Wang, “Engineering interface structures for heterojunction photocatalysts,” Physical Chemistry Chemical Physics, vol. 25, no. 6, pp. 4388–4407, 2023, doi: 10.1039/d2cp05281d.
[44] V. Anh Tran et al., “Experimental and computational investigation on interaction mechanism of Rhodamine B adsorption and photodegradation by zeolite imidazole frameworks-8,” Applied Surface Science, vol. 538, p. 148065, Feb. 2021, doi: 10.1016/j.apsusc.2020.148065.
[45] A. A. Ebnalwaled, A. H. Sadek, S. H. Ismail, and G. G. Mohamed, “Structural, optical, dielectric, and surface properties of polyimide hybrid nanocomposites films embedded mesoporous silica nanoparticles synthesized from rice husk ash for optoelectronic applications,” Optical and Quantum Electronics, vol. 54, no. 11, 2022, doi: 10.1007/s11082-022-03976-2.
[46] Q. Cong, X. Zhu, Z. Ban, J. Li, Z. Cai, and L. Pei, “Silicon Carbide-based Materials from Rice Husk,” Current Nanoscience, vol. 20, no. 4, pp. 585–595, Jul. 2024, doi: 10.2174/0115734137316974240620095136.
[47] P. Sarkar, S. A. Moyez, A. Dey, S. Roy, and S. K. K. Das, “Experimental investigation of photocatalytic and photovoltaic activity of titania/rice husk crystalline nano-silica hybrid composite,” Solar Energy Materials and Solar Cells, vol. 172, pp. 93–98, 2017, doi: 10.1016/j.solmat.2017.07.021.