Characteristics of syngas combustion resulting from coffee husk biomass waste gasification process: Overview of automotive fuel alternatives

Main Article Content

Andi Sanata
https://orcid.org/0000-0001-5508-8642
Imam Sholahuddin
https://orcid.org/0000-0003-4512-8596
Muhammad Dimyati Nashrullah
https://orcid.org/0000-0002-5187-0650
Hendry Y. Nanlohy
https://orcid.org/0000-0003-3108-2179
Mebin Samuel Panithasan
https://orcid.org/0000-0003-1658-4672

Abstract

The production of syngas from coffee husk biomass waste as a raw material offers significant potential as an alternative automotive fuel source through the gasification process, considering the abundant resources available. Therefore, this study aimed to characterize the physical properties of the fuel initially, in order to observe the differences in these properties after the fuel underwent Ultra Fine Bubble treatment. The objective was to analyze the combustion characteristics of syngas derived from coffee husk biomass waste, to develop a sustainable alternative to fossil fuels for automotive applications. The results showed that with increasing air discharge, the concentration of CO and H₂ gases in gasified syngas increased while the concentration of CH4 decreased. Additionally, higher air discharge resulted in lower tar content, higher flame temperature, higher flame height visualization, and higher generator power output as a review of the feasibility of alternative automotive fuels.

Downloads

Download data is not yet available.

Article Details

Section
Articles
Author Biography

Muhammad Dimyati Nashrullah, University of Jember, Indonesia

Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University (Master)

References

[1] M. Setiyo, “Alternative fuels for transportation sector in Indonesia,” Mechanical Engineering for Society and Industry, vol. 2, no. 1, pp. 1–6, 2022, doi: 10.31603/mesi.6850.
[2] Y. Putrasari, A. Praptijanto, W. B. Santoso, and O. Lim, “Resources, policy, and research activities of biofuel in Indonesia: A review,” Energy Reports, vol. 2, pp. 237–245, Nov. 2016, doi: 10.1016/j.egyr.2016.08.005.
[3] Erdiwansyah et al., “Prospects for renewable energy sources from biomass waste in Indonesia,” Case Studies in Chemical and Environmental Engineering, vol. 10, p. 100880, Dec. 2024, doi: 10.1016/j.cscee.2024.100880.
[4] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strategy Reviews, vol. 24, pp. 38–50, Apr. 2019, doi: 10.1016/j.esr.2019.01.006.
[5] I. C. Setiawan and M. Setiyo, “Renewable and Sustainable Green Diesel (D100) for Achieving Net Zero Emission in Indonesia Transportation Sector,” Automotive Experiences, vol. 5, no. 1, pp. 1–2, Mar. 2022, doi: 10.31603/ae.6895.
[6] S. Mujiarto, B. Sudarmanta, H. Fansuri, A. R. Saleh, N. D. Fajarningrum, and N. Hayati, “Characterization of diesel engines fueled by dual fuel syngas gasification refused derived fuel (RDF) and dexlite,” BIS Energy and Engineering, vol. 1, pp. V124039–V124039, 2024, doi: 10.31603/biseeng.61.
[7] A. Setiyawan, M. H. Fathan, A. Bahatmaka, D. F. Fitriana, K. Kriswanto, and R. F. Naryanto, “Characterization of bioethanol from fermented oryza sativa glutinosa as an alternative renewable fuel and blended with gasoline fuel,” BIS Energy and Engineering, vol. 1, pp. V124034–V124034, 2024, doi: 10.31603/biseeng.71.
[8] M. Hanifuddin, M. F. Taufiqurrahman, T. A. Setyawan, R. Anggarani, C. S. Wibowo, and B. Sugiarto, “Performance of a Single-Cylinder Four-Stroke Engine with High Concentrations of Gasoline-Ethanol-Methanol (GEM),” Automotive Experiences, vol. 6, no. 2, pp. 407–415, Aug. 2023, doi: 10.31603/ae.9332.
[9] M. Mokhtar, B. Sugiarto, A. A. Agama, A. Kurniawan, and A. S. Auzani, “Investigating Knocking Potential, Cycle Stability, and Emission Characteristics in Lean Spark Ignition Engine with Gasoline, Ethanol, and Methanol,” Automotive Experiences, vol. 7, no. 1, pp. 48–62, Apr. 2024, doi: 10.31603/ae.10607.
[10] J. Milano et al., “A Comprehensive exploration of jatropha curcas biodiesel production as a viable alternative feedstock in the fuel industry – Performance evaluation and feasibility analysis,” Mechanical Engineering for Society and Industry, vol. 4, no. 1, pp. 17–37, Apr. 2024, doi: 10.31603/mesi.10610.
[11] N. Couto, V. Silva, E. Monteiro, P. S. D. Brito, and A. Rouboa, “Experimental and Numerical Analysis of Coffee Husks Biomass Gasification in a Fluidized Bed Reactor,” Energy Procedia, vol. 36, pp. 591–595, 2013, doi: 10.1016/j.egypro.2013.07.067.
[12] J. L. de Oliveira, J. N. da Silva, M. A. Martins, E. G. Pereira, and M. da Conceição Trindade Bezerra e Oliveira, “Gasification of waste from coffee and eucalyptus production as an alternative source of bioenergy in Brazil,” Sustainable Energy Technologies and Assessments, vol. 27, pp. 159–166, Jun. 2018, doi: 10.1016/j.seta.2018.04.005.
[13] A. Tesfaye, F. Workie, and V. S. Kumar, “Production and Characterization of Coffee Husk Fuel Briquettes as an Alternative Energy Source,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–13, Jan. 2022, doi: 10.1155/2022/9139766.
[14] S. Mishra and R. K. Upadhyay, “Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters,” Materials Science for Energy Technologies, vol. 4, pp. 329–340, 2021, doi: 10.1016/j.mset.2021.08.009.
[15] Z. Zhang and S. Pang, “Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier,” Renewable Energy, vol. 132, pp. 416–424, Mar. 2019, doi: 10.1016/j.renene.2018.07.144.
[16] M. Cortazar et al., “A comprehensive review of primary strategies for tar removal in biomass gasification,” Energy Conversion and Management, vol. 276, p. 116496, Jan. 2023, doi: 10.1016/j.enconman.2022.116496.
[17] B. Yan et al., “In-situ elimination of biomass gasification tar based on the understanding of tar formation process: A review,” Journal of the Energy Institute, vol. 112, p. 101477, Feb. 2024, doi: 10.1016/j.joei.2023.101477.
[18] H. Yu, Z. Zhang, Z. Li, and D. Chen, “Characteristics of tar formation during cellulose, hemicellulose and lignin gasification,” Fuel, vol. 118, pp. 250–256, Feb. 2014, doi: 10.1016/j.fuel.2013.10.080.
[19] N. Casari, M. Pinelli, A. Suman, A. Candido, and M. Morini, “Deposition of syngas tar in fuel supplying duct of a biomass gasifier: A numerical study,” Fuel, vol. 273, p. 117579, Aug. 2020, doi: 10.1016/j.fuel.2020.117579.
[20] J. Li, J. Tao, B. Yan, L. Jiao, G. Chen, and J. Hu, “Review of microwave-based treatments of biomass gasification tar,” Renewable and Sustainable Energy Reviews, vol. 150, p. 111510, Oct. 2021, doi: 10.1016/J.RSER.2021.111510.
[21] Y. Yue, X. Jin, and L. Deng, “Experimental Study on Properties of Syngas, Tar, and Biochar Derived from Different Gasification Methods,” Applied Sciences, vol. 13, no. 20, p. 11490, Oct. 2023, doi: 10.3390/app132011490.
[22] B. Ciuffi, D. Chiaramonti, A. M. Rizzo, M. Frediani, and L. Rosi, “A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste,” Applied Sciences, vol. 10, no. 18, p. 6307, Sep. 2020, doi: 10.3390/app10186307.
[23] Y. Xie, Y. Su, P. Wang, S. Zhang, and Y. Xiong, “In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts,” Fuel Processing Technology, vol. 182, pp. 77–87, Dec. 2018, doi: 10.1016/j.fuproc.2018.10.019.
[24] S. L. Narnaware and N. L. Panwar, “Catalysts and their role in biomass gasification and tar abetment: a review,” Biomass Conversion and Biorefinery, Oct. 2021, doi: 10.1007/s13399-021-01981-1.
[25] M. Mayerhofer, S. Fendt, H. Spliethoff, and M. Gaderer, “Fluidized bed gasification of biomass – In bed investigation of gas and tar formation,” Fuel, vol. 117, pp. 1248–1255, Jan. 2014, doi: 10.1016/j.fuel.2013.06.025.
[26] L. Liu, Z. Zhang, S. Das, and S. Kawi, “Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review,” Applied Catalysis B: Environmental, vol. 250, pp. 250–272, Aug. 2019, doi: 10.1016/j.apcatb.2019.03.039.
[27] Y.-S. Chen, S.-S. Hsiau, C.-E. Liao, and S.-H. Chou, “Development of new technology for tar removal in IGCC,” Journal of Cleaner Production, vol. 384, p. 135575, Jan. 2023, doi: 10.1016/j.jclepro.2022.135575.
[28] L. Devi, K. J. Ptasinski, and F. J. J. . Janssen, “A review of the primary measures for tar elimination in biomass gasification processes,” Biomass and Bioenergy, vol. 24, no. 2, pp. 125–140, Feb. 2003, doi: 10.1016/S0961-9534(02)00102-2.
[29] H. Wang, Z.-Y. Luo, M.-X. Fang, and Q.-H. Wang, “Controlled separation of coal tar based on different temperature,” Fuel, vol. 258, p. 115700, Dec. 2019, doi: 10.1016/j.fuel.2019.115700.
[30] H. Dafiqurrohman, M. I. Bagus Setyawan, K. Yoshikawa, and A. Surjosatyo, “Tar reduction using an indirect water condenser and rice straw filter after biomass gasification,” Case Studies in Thermal Engineering, vol. 21, p. 100696, Oct. 2020, doi: 10.1016/j.csite.2020.100696.
[31] S. H. Pranolo et al., “Feasible tar cleaning method of producer gas from palm kernel shell and mahogany fruit shell gasification,” Materials Today: Proceedings, vol. 63, pp. S237–S243, 2022, doi: 10.1016/j.matpr.2022.02.431.
[32] J. J. Hernández, R. Ballesteros, and G. Aranda, “Characterisation of tars from biomass gasification: Effect of the operating conditions,” Energy, vol. 50, pp. 333–342, Feb. 2013, doi: 10.1016/j.energy.2012.12.005.
[33] A. Warsita, K. A. Al-attab, and Z. A. Zainal, “Effect of water addition in a microwave assisted thermal cracking of biomass tar models,” Applied Thermal Engineering, vol. 113, pp. 722–730, Feb. 2017, doi: 10.1016/j.applthermaleng.2016.11.076.
[34] D. Barrettino, T. Gisler, C. Zumbuhl, C. Di Battista, and M. Thalmann, “Smart Sensor System for Remote Monitoring of Grains Stored in Plastic Bags (Silo Bags),” in 2019 IEEE SENSORS, Oct. 2019, pp. 1–4, doi: 10.1109/SENSORS43011.2019.8956786.
[35] J. Jiang et al., “Temperature and Humidity Acquisition Device Based on DHT11,” in 2021 2nd International Conference on Artificial Intelligence and Information Systems, May 2021, pp. 1–6, doi: 10.1145/3469213.3470675.
[36] C. Urquiza and C. A. YR, “miguel5612/mqsensorslib: Arduino preview v1. 03.” Sep, 2019, doi: 10.5281/zenodo.3384301.
[37] O. Chidolue and T. Iqbal, “Real-time monitoring and data acquisition using LoRa for a remote solar powered oil well,” International Journal of Applied Power Engineering (IJAPE), vol. 13, no. 1, p. 201, Mar. 2024, doi: 10.11591/ijape.v13.i1.pp201-212.
[38] K. J. Abioye et al., “Optimization of syngas production from co-gasification of palm oil decanter cake and alum sludge: An RSM approach with char characterization,” Environmental Research, vol. 246, p. 118027, Apr. 2024, doi: 10.1016/j.envres.2023.118027.
[39] J. Bonilla and G. Gordillo, “Adiabatic Fixed-Bed Gasification of Colombian Coffee Husk Using Air-Steam Blends for Partial Oxidation,” Journal of Combustion, vol. 2017, pp. 1–10, 2017, doi: 10.1155/2017/3576509.
[40] C. Rodriguez and G. Gordillo, “Adiabatic Gasification and Pyrolysis of Coffee Husk Using Air‐Steam for Partial Oxidation,” Journal of Combustion, vol. 2011, no. 1, Jan. 2011, doi: 10.1155/2011/303168.
[41] M. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” Journal of Cleaner Production, vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815.
[42] R. Bakari et al., “Converting food waste to biofuel: A sustainable energy solution for Sub-Saharan Africa,” Sustainable Chemistry for the Environment, vol. 7, p. 100126, Sep. 2024, doi: 10.1016/j.scenv.2024.100126.
[43] S. Paniagua, R. Lebrero, and R. Muñoz, “Syngas biomethanation: Current state and future perspectives,” Bioresource Technology, vol. 358, p. 127436, Aug. 2022, doi: 10.1016/j.biortech.2022.127436.
[44] A. Al-Rumaihi, M. Shahbaz, G. Mckay, H. Mackey, and T. Al-Ansari, “A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield,” Renewable and Sustainable Energy Reviews, vol. 167, p. 112715, Oct. 2022, doi: 10.1016/j.rser.2022.112715.
[45] A. N. Shiplyuk et al., “Gasification of low-melting hydrocarbon material in the airflow heated by hydrogen combustion,” International Journal of Hydrogen Energy, vol. 45, no. 15, pp. 9098–9112, Mar. 2020, doi: 10.1016/j.ijhydene.2020.01.099.
[46] F. I. Njuguna, H. M. Ndiritu, B. B. Gathitu, M. Hawi, and J. M. Munyalo, “Experimental investigation and optimization of the gasification parameters of macadamia nutshells in a batch-fed bubbling fluidized bed gasifier with air preheating,” Energy Storage and Saving, vol. 2, no. 4, pp. 559–570, Dec. 2023, doi: 10.1016/j.enss.2023.07.001.
[47] A. L. Galindo, E. S. Lora, R. V. Andrade, S. Y. Giraldo, R. L. Jaén, and V. M. Cobas, “Biomass gasification in a downdraft gasifier with a two-stage air supply: Effect of operating conditions on gas quality,” Biomass and Bioenergy, vol. 61, pp. 236–244, Feb. 2014, doi: 10.1016/j.biombioe.2013.12.017.
[48] A. M. James R, W. Yuan, M. D. Boyette, and D. Wang, “Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier,” Renewable Energy, vol. 117, pp. 116–124, Mar. 2018, doi: 10.1016/j.renene.2017.10.034.
[49] E. S. Aydin, O. Yucel, and H. Sadikoglu, “Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier,” International Journal of Hydrogen Energy, vol. 44, no. 32, pp. 17389–17396, Jun. 2019, doi: 10.1016/j.ijhydene.2019.02.175.
[50] E. V. Jithin, G. K. S. Raghuram, T. V. Keshavamurthy, R. K. Velamati, C. Prathap, and R. J. Varghese, “A review on fundamental combustion characteristics of syngas mixtures and feasibility in combustion devices,” Renewable and Sustainable Energy Reviews, vol. 146, p. 111178, Aug. 2021, doi: 10.1016/j.rser.2021.111178.
[51] K. Safer, F. Tabet, A. Ouadha, M. Safer, and I. Gökalp, “Combustion characteristics of hydrogen-rich alternative fuels in counter-flow diffusion flame configuration,” Energy Conversion and Management, vol. 74, pp. 269–278, Oct. 2013, doi: 10.1016/j.enconman.2013.05.017.
[52] T. Piemsinlapakunchon and M. C. Paul, “Effect of syngas fuel compositions on the occurrence of instability of laminar diffusion flame,” International Journal of Hydrogen Energy, vol. 46, no. 10, pp. 7573–7588, Feb. 2021, doi: 10.1016/j.ijhydene.2020.11.259.
[53] M. Fiore, V. Magi, and A. Viggiano, “Internal combustion engines powered by syngas: A review,” Applied Energy, vol. 276, p. 115415, Oct. 2020, doi: 10.1016/j.apenergy.2020.115415.
[54] K. Abouemara, M. Shahbaz, G. Mckay, and T. Al-Ansari, “The review of power generation from integrated biomass gasification and solid oxide fuel cells: current status and future directions,” Fuel, vol. 360, p. 130511, Mar. 2024, doi: 10.1016/j.fuel.2023.130511.
[55] D. A. S. Andriatoavina, D. A. H. Fakra, N. A. M. N. Razafindralambo, J. P. Praene, and J. M. M. Andriamampianina, “Potential of fueling spark-ignition engines with syngas or syngas blends for power generation in rural electrification: A short review and S.W.O.T. analysis,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101510, Oct. 2021, doi: 10.1016/j.seta.2021.101510.
[56] N. Indrawan, S. Thapa, P. R. Bhoi, R. L. Huhnke, and A. Kumar, “Engine power generation and emission performance of syngas generated from low-density biomass,” Energy Conversion and Management, vol. 148, pp. 593–603, Sep. 2017, doi: 10.1016/j.enconman.2017.05.066.
[57] N. H. Nam, C. T. A. Ngoc, and T. Van Bay, “Investigation on gasification of coffee husk in CO2, H2O, and mixed atmospheres,” Vietnam Journal of Chemistry, vol. 59, no. 6, pp. 775–780, Dec. 2021, doi: 10.1002/vjch.202100002.
[58] H. Dewajani, W. Zamrudy, A. Ariani, A. Arianto, and M. Nur Abror Falah, “Syngas Production from Updraft Co-Gasification Process Using Compost, Coffee Husk, and Coal as a Raw Materials,” Jurnal Bahan Alam Terbarukan, vol. 12, no. 2, pp. 158–165, Dec. 2023, doi: 10.15294/jbat.v12i2.47972.
[59] S. Poyilil, A. Palatel, and M. Chandrasekharan, “Physico-chemical characterization study of coffee husk for feasibility assessment in fluidized bed gasification process,” Environmental Science and Pollution Research, vol. 29, no. 34, pp. 51041–51053, Jul. 2022, doi: 10.1007/s11356-021-17048-7.
[60] S. Famielec and W. Kępka, “Possibilities of Applying the Gasification Process in Coffee Grounds Treatment,” 2020, pp. 703–713.