Development of hybrid nanofluids and solar heat exchangers (SHX) to improve heat transfer performance in solar panel cooling

Main Article Content

Amri Abdulah
https://orcid.org/0000-0002-3351-5487
Apang Djafar Shieddieque
https://orcid.org/0000-0003-3874-3347
Dede Ardi Rajab
https://orcid.org/0000-0002-3236-0153
Khoirudin Khoirudin
https://orcid.org/0000-0003-3646-2138
Sukarman Sukarman
https://orcid.org/0000-0001-7464-6099

Abstract

This study examined the thermohydraulic efficiency of a novel Solar Heat Exchanger (SHX) designed for cooling solar panels. The SHX was specifically created for 20 Wp solar panels measuring 450 × 350 mm. The cooling medium was a hybrid nanofluid (HNF) consisting of Al₂O₃ and SiO₂ nanoparticles (0.5–1%) suspended in a base fluid of ethylene glycol and water (EG/W) at a 10:90 ratio. Experiments were performed using flow rates ranging from 1 to 3 LPM. The HNF coolant demonstrated enhanced performance in the solar heat exchanger, with a maximum heat transfer rate increase of 56.07% compared with that of the base fluid. This improvement in the heat-transfer rate was associated with an increase in the heat-transfer coefficient, which was influenced by the flow rate and volume fraction of the HNF. The effectiveness of the HNF surpassed that of the base fluids by approximately 117%. The results indicated that higher flow rates and volume fractions improved cooling performance. The enhanced cooling efficiency and innovative SHX design make this study particularly relevant to the development of solar panel cooling systems, particularly those employing hybrid nanofluid coolants.

Downloads

Download data is not yet available.

Article Details

Section
Articles
Author Biography

Apang Djafar Shieddieque, Sekolah Tinggi Teknologi Wastukancana, Indonesia

Department of mechanical engineering

References

[1] A. Ibrahim, M. Y. Othman, M. H. Ruslan, S. Mat, and K. Sopian, “Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 352–365, Jan. 2011, doi: 10.1016/j.rser.2010.09.024.
[2] M. Ortiz, H. Barsun, H. He, P. Vorobieff, and A. Mammoli, “Modeling of a solar-assisted HVAC system with thermal storage,” Energy and Buildings, vol. 42, no. 4, pp. 500–509, Apr. 2010, doi: 10.1016/j.enbuild.2009.10.019.
[3] J. Yoon et al., “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nature Communications, vol. 2, no. 1, p. 343, Jun. 2011, doi: 10.1038/ncomms1318.
[4] S. D. Prasetyo, E. P. Budiana, A. R. Prabowo, and Z. Arifin, “Modeling Finned Thermal Collector Construction Nanofluid-based Al2O3 to Enhance Photovoltaic Performance,” Civil Engineering Journal, vol. 9, no. 12, pp. 2989–3007, Dec. 2023, doi: 10.28991/CEJ-2023-09-12-03.
[5] B. J. Huang et al., “Solar cell junction temperature measurement of PV module,” Solar Energy, vol. 85, no. 2, pp. 388–392, Feb. 2011, doi: 10.1016/j.solener.2010.11.006.
[6] H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Applied Energy, vol. 90, no. 1, pp. 309–315, Feb. 2012, doi: 10.1016/j.apenergy.2011.01.017.
[7] M. S. Hossain, A. K. Pandey, J. Selvaraj, N. A. Rahim, M. M. Islam, and V. V. Tyagi, “Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis,” Renewable Energy, vol. 136, pp. 1320–1336, Jun. 2019, doi: 10.1016/j.renene.2018.10.097.
[8] A. B. Al-Aasam, A. Ibrahim, K. Sopian, B. Abdulsahib M, and M. Dayer, “Nanofluid-based photovoltaic thermal solar collector with nanoparticle-enhanced phase change material (Nano-PCM) and twisted absorber tubes,” Case Studies in Thermal Engineering, vol. 49, p. 103299, Sep. 2023, doi: 10.1016/j.csite.2023.103299.
[9] E. Ebrahimnia-Bajestan, M. Charjouei Moghadam, H. Niazmand, W. Daungthongsuk, and S. Wongwises, “Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers,” International Journal of Heat and Mass Transfer, vol. 92, pp. 1041–1052, Jan. 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.107.
[10] M. A. Fikri et al., “Characteristic of TiO2-SiO2 Nanofluid With Water/Ethylene Glycol Mixture for Solar Application,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 81, no. 2, pp. 1–13, Mar. 2021, doi: 10.37934/arfmts.81.2.113.
[11] H. Adun et al., “Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids,” Energies, vol. 14, no. 15, p. 4434, Jul. 2021, doi: 10.3390/en14154434.
[12] M. Hemmat Esfe et al., “Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation,” International Communications in Heat and Mass Transfer, vol. 66, pp. 100–104, Aug. 2015, doi: 10.1016/j.icheatmasstransfer.2015.05.014.
[13] F. Benedict et al., “Thermal Performance of Hybrid-Inspired Coolant for Radiator Application,” Nanomaterials, vol. 10, no. 6, p. 1100, Jun. 2020, doi: 10.3390/nano10061100.
[14] A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Solar Energy, vol. 86, no. 1, pp. 253–265, Jan. 2012, doi: 10.1016/j.solener.2011.09.029.
[15] A. H. A. Al-Waeli, K. Sopian, M. T. Chaichan, H. A. Kazem, H. A. Hasan, and A. N. Al-Shamani, “An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system,” Energy Conversion and Management, vol. 142, pp. 547–558, Jun. 2017, doi: 10.1016/j.enconman.2017.03.076.
[16] T. K. Murtadha, A. A. dil Hussein, A. A. H. Alalwany, S. S. Alrwashdeh, and A. M. Al-Falahat, “Improving the cooling performance of photovoltaic panels by using two passes circulation of titanium dioxide nanofluid,” Case Studies in Thermal Engineering, vol. 36, p. 102191, Aug. 2022, doi: 10.1016/j.csite.2022.102191.
[17] S. M. Peyghambarzadeh, S. H. Hashemabadi, M. S. Jamnani, and S. M. Hoseini, “Improving the cooling performance of automobile radiator with Al2O3/water nanofluid,” Applied Thermal Engineering, vol. 31, no. 10, pp. 1833–1838, Jul. 2011, doi: 10.1016/j.applthermaleng.2011.02.029.
[18] L. Syam Sundar, E. Venkata Ramana, M. K. Singh, and A. C. M. Sousa, “Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study,” International Communications in Heat and Mass Transfer, vol. 56, pp. 86–95, Aug. 2014, doi: 10.1016/j.icheatmasstransfer.2014.06.009.
[19] R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” International Journal of Heat and Mass Transfer, vol. 52, no. 21–22, pp. 4675–4682, Oct. 2009, doi: 10.1016/j.ijheatmasstransfer.2009.06.027.
[20] M. Hemmat Esfe, M. R. H. Ahangar, D. Toghraie, M. H. Hajmohammad, H. Rostamian, and H. Tourang, “Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data,” Journal of Thermal Analysis and Calorimetry, vol. 126, no. 2, pp. 837–843, Nov. 2016, doi: 10.1007/s10973-016-5469-8.
[21] Mohd Amiruddin Fikri, Wan Mohd Faizal, Hasyiya Karimah Adli, Rizalman Mamat, Wan Hamzah Azmi, and Anwar Ilmar Ramadhan, “Experimental Study on Thermo-Physical Properties of TiO2-SiO2 Nanofluids (70:30) in Water/Ethylene Glycol Mixture,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 108, no. 2, pp. 200–214, Oct. 2023, doi: 10.37934/arfmts.108.2.200214.
[22] W. H. Azmi, K. Abdul Hamid, A. I. Ramadhan, and A. I. M. Shaiful, “Thermal hydraulic performance for hybrid composition ratio of TiO2–SiO2 nanofluids in a tube with wire coil inserts,” Case Studies in Thermal Engineering, vol. 25, p. 100899, Jun. 2021, doi: 10.1016/j.csite.2021.100899.
[23] A. I. Ramadhan and W. H. Azmi, “The effect of nanoparticles composition ratio on dynamic viscosity of Al2O3-TiO2-SiO2 nanofluids,” Materials Today: Proceedings, vol. 48, pp. 1920–1923, 2022, doi: 10.1016/j.matpr.2021.09.450.
[24] A. I. Ramadhan, W. H. Azmi, R. Mamat, E. Diniardi, and T. Y. Hendrawati, “Experimental Investigation of Cooling Performance in Automotive Radiator using Al2O3-TiO2-SiO2 Nanofluids,” Automotive Experiences, vol. 5, no. 1, pp. 28–39, Nov. 2021, doi: 10.31603/ae.6111.
[25] ASHRAE Handbook, Fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers, 2009.
[26] S. Akilu, A. T. Baheta, K. Kadirgama, E. Padmanabhan, and K. V. Sharma, “Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids,” Journal of Molecular Liquids, vol. 284, pp. 780–792, Jun. 2019, doi: 10.1016/j.molliq.2019.03.159.
[27] N. N. M. Zawawi, W. H. Azmi, M. Z. Sharif, and G. Najafi, “Experimental investigation on stability and thermo-physical properties of Al2O3–SiO2/PAG nanolubricants with different nanoparticle ratios,” Journal of Thermal Analysis and Calorimetry, vol. 135, no. 2, pp. 1243–1255, Jan. 2019, doi: 10.1007/s10973-018-7670-4.
[28] B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, Apr. 1998, doi: 10.1080/08916159808946559.
[29] E. W. J. Mardles, “Viscosity of Suspensions and the Einstein Equation,” Nature, vol. 145, no. 3686, pp. 970–970, Jun. 1940, doi: 10.1038/145970a0.
[30] R. L. Hamilton and O. K. Crosser, “Thermal Conductivity of Heterogeneous Two-Component Systems,” Industrial & Engineering Chemistry Fundamentals, vol. 1, no. 3, pp. 187–191, Aug. 1962, doi: 10.1021/i160003a005.
[31] M. R. Sohel, S. S. Khaleduzzaman, R. Saidur, A. Hepbasli, M. F. M. Sabri, and I. M. Mahbubul, “An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid,” International Journal of Heat and Mass Transfer, vol. 74, pp. 164–172, Jul. 2014, doi: 10.1016/j.ijheatmasstransfer.2014.03.010.
[32] A. T. Wijayanta, I. Yaningsih, M. Aziz, T. Miyazaki, and S. Koyama, “Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger,” Applied Thermal Engineering, vol. 145, pp. 27–37, Dec. 2018, doi: 10.1016/j.applthermaleng.2018.09.009.
[33] S. Khalid, I. Zakaria, W. H. Azmi, and W. A. N. W. Mohamed, “Thermal–electrical–hydraulic properties of Al2O3–SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management,” Journal of Thermal Analysis and Calorimetry, vol. 143, no. 2, pp. 1555–1567, Jan. 2021, doi: 10.1007/s10973-020-09695-8.
[34] G. M. Moldoveanu, G. Huminic, A. A. Minea, and A. Huminic, “Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid,” International Journal of Heat and Mass Transfer, vol. 127, pp. 450–457, Dec. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.07.024.
[35] P. Kanti, K. V. Sharma, C. G. Ramachandra, and B. Panitapu, “Stability and thermophysical properties of fly ash nanofluid for heat transfer applications,” Heat Transfer, vol. 49, no. 8, pp. 4722–4737, Dec. 2020, doi: 10.1002/htj.21849.
[36] P. Keblinski, S. . Phillpot, S. U. . Choi, and J. . Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, vol. 45, no. 4, pp. 855–863, Feb. 2002, doi: 10.1016/S0017-9310(01)00175-2.
[37] A. A. Alnaqi, “Numerical analysis of pressure drop and heat transfer of a Non-Newtonian nanofluids in a Li-ion battery thermal management system (BTMS) using bionic geometries,” Journal of Energy Storage, vol. 45, p. 103670, Jan. 2022, doi: 10.1016/j.est.2021.103670.
[38] S. A. Ahmed, M. Ozkaymak, A. Sözen, T. Menlik, and A. Fahed, “Improving car radiator performance by using TiO2-water nanofluid,” Engineering Science and Technology, an International Journal, vol. 21, no. 5, pp. 996–1005, Oct. 2018, doi: 10.1016/j.jestch.2018.07.008.

Most read articles by the same author(s)