Exploring the potential of Indonesian iron sand in the formation of iron nitride for magnetic applications
Main Article Content
Abstract
Iron nitride is a transition metal material that exhibits ferromagnetic properties at room temperature, making it a suitable candidate for use in Soft Magnetic Composites (SMC) applications. Previous research showed that iron nitride can be synthesized using nano-sized iron oxide powder derived from processed natural iron sand through gas nitriding. Considering the abundance of iron sand in Indonesia, there is a need to carry out an investigation related to iron sand-based SMC. Therefore, this research aims to synthesize iron nitride material using the abundant natural iron sand discovered in Indonesia. This study used iron oxide material synthesized from locally obtained natural iron sand, in the form of Fe3O4 and Fe2O3. Iron oxide undergoes coprecipitation and was subsequently exposed to the gas nitriding process with a holding time of 4 hours and a gas flow of 150 mL/min in NH3 gas. The results show that iron nitride is formed after nitriding of iron oxide powders, and the phases formed include ε-Fe3N and γ’-Fe4N. The synthesized material exhibits soft magnetic properties, with saturation magnetization values ranging from the highest at 75.41 emu/g and the lowest at 18.9 emu/g.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] M. N. Yuniarto, Y. U. Nugraha, I. M. Y. Negara, D. A. Asfani, and I. Sidharta, “Designing and performance investigation of permanent magnet motor prototype for UTV electric drive train application,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 4, p. 2018, Dec. 2021, doi: 10.11591/ijpeds.v12.i4.pp2018-2029.
[3] D. A. Asfani et al., “Electric Vehicle Research in Indonesia: A Road map, Road tests, and Research Challenges,” IEEE Electrification Magazine, vol. 8, no. 2, pp. 44–51, Jun. 2020, doi: 10.1109/MELE.2020.2985485.
[4] M. Butcher, “Acquired by Mercedes-Benz, YASA’s revolutionary electric motor is set for big things,” TechCrunch. Accessed: Feb. 10, 2025. [Online]. Available: https://techcrunch.com/2021/09/03/acquired-by-mercedes-benz-yasas-revolutionary-electric-motor-is-set-for-big-things/
[5] B. Oliver, “An Innovative EV Motor Used by Lamborghini, McLaren, and Ferrari Is Being Mass-Produced by Mercedes,” Wired. Accessed: Feb. 10, 2025. [Online]. Available: https://www.wired.com/story/yasa-motors-mercedes-axial-flux-2024/
[6] A. F. Desanti, D. A. Asfani, M. N. Yuniarto, and Y. U. Nugraha, “Comparison and Analysis of Stator Plate Holder on Yokeless and Segmented Armature Machine,” Journal of Physics: Conference Series, vol. 1577, no. 1, p. 012039, Jul. 2020, doi: 10.1088/1742-6596/1577/1/012039.
[7] Y. U. Nugraha, D. Anton Asfani, D. C. Riawan, and M. Nur Yuniarto, “Performance Improvement of Axial Switched Reluctance Motor using Low-Cost Magnet,” in 2019 6th International Conference on Electric Vehicular Technology (ICEVT), IEEE, Nov. 2019, pp. 300–303. doi: 10.1109/ICEVT48285.2019.8994021.
[8] A. Multi, I. Garniwa, and U. B. Sudibyo, “Determining the Air Gap Length of an Axial Flux Wound Rotor Synchronous Generator,” MAKARA Journal of Technology Series, vol. 17, no. 2, Sep. 2013, doi: 10.7454/mst.v17i2.1952.
[9] H. Shokrollahi and K. Janghorban, “Soft magnetic composite materials (SMCs),” Journal of Materials Processing Technology, vol. 189, no. 1–3, pp. 1–12, Jul. 2007, doi: 10.1016/j.jmatprotec.2007.02.034.
[10] J. Vesa and P. Rasilo, “Producing 3-D Imitations of Soft Magnetic Composite Material Geometries,” IEEE Transactions on Magnetics, vol. 55, no. 10, pp. 1–10, Oct. 2019, doi: 10.1109/TMAG.2019.2925580.
[11] K. J. Sunday and M. L. Taheri, “Soft magnetic composites: recent advancements in the technology,” Metal Powder Report, vol. 72, no. 6, pp. 425–429, Nov. 2017, doi: 10.1016/j.mprp.2016.08.003.
[12] L. Qian, J. Peng, Z. Xiang, Y. Pan, and W. Lu, “Effect of annealing on magnetic properties of Fe/Fe3O4 soft magnetic composites prepared by in-situ oxidation and hydrogen reduction methods,” Journal of Alloys and Compounds, vol. 778, pp. 712–720, Mar. 2019, doi: 10.1016/j.jallcom.2018.11.184.
[13] Z. Birčáková et al., “Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded Ni-Zn ferrite nanofibres,” Journal of Magnetism and Magnetic Materials, vol. 485, pp. 1–7, Sep. 2019, doi: 10.1016/j.jmmm.2019.04.060.
[14] A. R. Asari, Y. Guo, and J. Zhu, “Performances of SOMALOY 700 (5P) and SOMALOY 500 Materials under 1-D Alternating Magnetic Flux Density,” in 2019 International UNIMAS STEM 12th Engineering Conference (EnCon), IEEE, Aug. 2019, pp. 52–58. doi: 10.1109/EnCon.2019.8861264.
[15] Á. S. Muñoz et al., “Study of an iron phosphate soft magnetic composite and its stability at high temperatures,” Ceramics International, vol. 50, no. 13, pp. 22468–22478, Jul. 2024, doi: 10.1016/j.ceramint.2024.03.349.
[16] X. Tan, S. Wang, Y. Chen, Y. Zhou, and Z. Li, “Design, preparation and characterization of iron nitride magnetic abrasives,” Journal of Alloys and Compounds, vol. 774, pp. 443–450, Feb. 2019, doi: 10.1016/j.jallcom.2018.09.389.
[17] C. Zhang et al., “Design, Preparation, and Magnetic Properties of Fe4N/Fe3N Soft Magnetic Composites Fabricated by Gas Nitridation,” Journal of Superconductivity and Novel Magnetism, vol. 36, no. 3, pp. 923–929, Mar. 2023, doi: 10.1007/s10948-023-06521-8.
[18] S. Bhattacharyya, “Iron Nitride Family at Reduced Dimensions: A Review of Their Synthesis Protocols and Structural and Magnetic Properties,” The Journal of Physical Chemistry C, vol. 119, no. 4, pp. 1601–1622, Jan. 2015, doi: 10.1021/jp510606z.
[19] C. Zhang et al., “Preparation and soft magnetic properties of γ′-Fe4N particles,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 2, pp. 1254–1257, Jan. 2018, doi: 10.1007/s10854-017-8029-5.
[20] A.-M. Zieschang et al., “Nanoscale Iron Nitride, ε-Fe 3 N: Preparation from Liquid Ammonia and Magnetic Properties,” Chemistry of Materials, vol. 29, no. 2, pp. 621–628, Jan. 2017, doi: 10.1021/acs.chemmater.6b04088.
[21] J. Triyono, R. Rahajeng, and E. Surojo, “Surface Modification and Hardness Behavior of AISI 304 as an Artificial Hip Joint using Ammonia and Scallop Shell Powder as a Nitriding Agent,” Evergreen, vol. 8, no. 2, pp. 335–343, Jun. 2021, doi: 10.5109/4480714.
[22] M. Gong, P. Li, and W. Tong, “Absorption properties of iron nitrides particles fabricated by ball milling,” in 2018 International Symposium on Mechanics, Structures and Materials Science (MSMS 2018), 2018, p. 020011. doi: 10.1063/1.5048742.
[23] Y. Utsushikawa and K. Niizuma, “The saturation magnetization of FeN films prepared by nitriding treatment in N2 plasma,” Journal of Alloys and Compounds, vol. 222, no. 1–2, pp. 188–192, May 1995, doi: 10.1016/0925-8388(94)04915-7.
[24] I. Sidharta, N. H. Romadhon, R. F. Syah, R. K. Hafiyanda, D. Darminto, and A. Shahab, “Preparation of Iron Nitride Material from Natural Iron Sand,” Materials Science Forum, vol. 1028, pp. 50–55, Apr. 2021, doi: 10.4028/www.scientific.net/MSF.1028.50.
[25] Sunaryono et al., “Various Magnetic Properties of Magnetite Nanoparticles Synthesized from Iron-Sands by Coprecipitation Method at Room Temperature,” Materials Science Forum, vol. 827, pp. 229–234, Aug. 2015, doi: 10.4028/www.scientific.net/MSF.827.229.
[26] A. Taufiq, Sunaryono, E. G. Rachman Putra, S. Pratapa, and Darminto, “Nano-Structural Studies on Fe3O4 Particles Dispersing in a Magnetic Fluid Using X-Ray Diffractometry and Small-Angle Neutron Scattering,” Materials Science Forum, vol. 827, pp. 213–218, Aug. 2015, doi: 10.4028/www.scientific.net/MSF.827.213.
[27] Z. Jalil, A. Rahwanto, F. Mulana, and E. Handoko, “Synthesis of nano-hematite (Fe2O3) extracted from natural iron ore prepared by mechanical alloying method,” in Nanoscience and Nanotechnology: NANO-SciTech, 2019, p. 020041. doi: 10.1063/1.5124671.
[28] M. . Muhammad, A. . Fatmaliana, and Z. . Jalil, “Study of hematite mineral (Fe 2 O 3 ) extracted from natural iron ore prepared by co-precipitation method,” IOP Conference Series: Earth and Environmental Science, vol. 348, no. 1, p. 012135, Nov. 2019, doi: 10.1088/1755-1315/348/1/012135.
[29] R. Ramlan, A. A. Bama, A. Johan, M. Naibaho, and M. Ginting, “Synthesis and Characterization of Hematite (α-Fe2O3) from Iron Sand Using Coprecipitation Method,” Key Engineering Materials, vol. 985, pp. 145–151, Aug. 2024, doi: 10.4028/p-uIb7JJ.
[30] N. Novita, M. Naibaho, E. Puspita, R. Ramlan, M. Ginting, and S. Humaidi, “Analysis of Mineral Content and Magnetic Properties of Iron Sand of Bah Bolon Simalungun River, North Sumetera,” Asian Journal of Engineering, Social and Health, vol. 2, no. 12, pp. 1633–1639, Dec. 2023, doi: 10.46799/ajesh.v2i12.196.
[31] N. R. Ardiani, S. Setianto, B. Santosa, B. M. Wibawa, C. Panatarani, and I. M. Joni, “Quantitative analysis of iron sand mineral content from the south coast of Cidaun, West Java using rietveld refinement method,” in 2nd International Conference and Exhibition on Powder Technology (ICePTi), 2020, p. 040003. doi: 10.1063/5.0003018.
[32] R. Adi, I. Ismail, A. Akhyar, Z. Jalil, and H. G. Ariel, “Nanomagnetite Extraction from Iron Sand Prepared by Mechanical Alloying Method,” Key Engineering Materials, vol. 892, pp. 129–133, Jul. 2021, doi: 10.4028/www.scientific.net/KEM.892.129.
[33] S. T. Wicaksono, A. Wahfiudin, A. D. Pramata, and S. Sagadevan, “Effect of Fe (III)/Fe (II) cation molar ratio variation on magnetite Fe3O4 nanoparticles synthesized from natural iron sand by co-precipitation method,” MRS Advances, vol. 9, no. 20, pp. 1593–1597, Dec. 2024, doi: 10.1557/s43580-024-00923-z.
[34] Maulinda, I. Zein, and Z. Jalil, “Identification of Magnetite Material (Fe 3 O 4 ) Based on Natural Materials as Catalyst for Industrial Raw Material Application,” Journal of Physics: Conference Series, vol. 1232, no. 1, p. 012054, Sep. 2019, doi: 10.1088/1742-6596/1232/1/012054.
[35] M. Jovičević-Klug, Y. Ma, P. Jovičević-Klug, J. M. Prabhakar, M. Rohwerder, and D. Raabe, “Thermal Kinetics and Nitriding Effect of Ammonia-Based Direct Reduction of Iron Oxides,” ACS Sustainable Chemistry & Engineering, vol. 12, no. 26, pp. 9882–9896, Jul. 2024, doi: 10.1021/acssuschemeng.4c02363.
[36] R. D. Widodo et al., “Synthesis and characterization of iron (III) oxide from natural iron sand of the south coastal area, Purworejo Central Java,” Journal of Physics: Conference Series, vol. 1444, no. 1, p. 012043, Jan. 2020, doi: 10.1088/1742-6596/1444/1/012043.
[37] A. Jafari, S. Farjami Shayesteh, M. Salouti, and K. Boustani, “Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 379, pp. 305–312, Apr. 2015, doi: 10.1016/j.jmmm.2014.12.050.
[38] S. Nengsih, S. N. Madjid, M. Mursal, R. Idroes, and Z. Jalil, “Magnetization Study of Iron Sand from Sabang, Indonesia: The Potential of Magnetic Materials in the Photocatalytic Field,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 18, no. 2, pp. 344–352, Aug. 2023, doi: 10.9767/bcrec.19041.
[39] O. Togibasa, S. Bijaksana, and G. Novala, “Magnetic Properties of Iron Sand from the Tor River Estuary, Sarmi, Papua,” Geosciences, vol. 8, no. 4, p. 113, Mar. 2018, doi: 10.3390/geosciences8040113.
[40] L. Maghfiroh, A. Susilo, Wiyono, and A. N. Faris, “Magnetic mineral characterization of iron sand deposits in Bambang Beach Lumajang, East Java, Indonesia,” in The 3rd International Conference on Science, Mathematics, Environment, and Education, 2023, p. 100003. doi: 10.1063/5.0106817.
[41] R. . Nathasa, S. . Bijaksana, S. J. . Fajar, and T. G. . Pitaloka, “MAGNETIC AND GEOCHEMICAL CHARACTERIZATIONS OF IRONSAND DEPOSITS FROM CIREBON COASTAL AREA, WEST JAVA,” IOP Conference Series: Earth and Environmental Science, vol. 873, no. 1, p. 012076, Oct. 2021, doi: 10.1088/1755-1315/873/1/012076.
[42] G. H. . Tamuntuan, A. . Tanauma, G. . Pasau, and H. . Sangian, “Grain size distribution, morphology, and elemental composition of iron sand from North Sulawesi,” IOP Conference Series: Materials Science and Engineering, vol. 567, no. 1, p. 012042, Jul. 2019, doi: 10.1088/1757-899X/567/1/012042.
[43] E. . Handoko et al., “Structural, magnetic and microwave absorption properties of natural iron sand,” Journal of Physics: Conference Series, vol. 1869, no. 1, p. 012182, Apr. 2021, doi: 10.1088/1742-6596/1869/1/012182.
[44] Ravita, Amita, A. Kumar, and P. S. . Rana, “Effect of Annealing on Structural Properties of Fe 3 O 4 Ferrite Nanoparticles,” Advanced Science Letters, vol. 24, no. 8, pp. 5748–5751, Aug. 2018, doi: 10.1166/asl.2018.12190.
[45] N. V. Long, T. N. H. Nguyen, H. P. Le, V. C. Ho, and H. T. Nguyen, “The transformation of ferromagnetic properties of Fe3O4 into ferromagnetic properties of α-Fe2O3 by the polyol process, heat treatment, isothermally annealing and sintering,” Communications in Physics, vol. 34, no. 3, p. 3\, Jul. 2024, doi: 10.15625/0868-3166/20630.
[46] M. K. . Srivastava and U. Kumar, “Structural and optical properties of α -Fe 2 O 3 nanoparticles realized by simple thermal decomposition route,” Physica Scripta, vol. 96, no. 1, p. 015804, Nov. 2020, doi: 10.1088/1402-4896/abc281.
[47] N. P. D. Kristina, I. G. Arjana, and P. Yasa, “SYNTHESIS AND CHARACTERIZATION OF MAGNETITE NANOMATERIALS IN TIANYAR IRON SAND USING CO-PRECIPITATION METHOD,” Indonesian Physical Review, vol. 7, no. 3, pp. 398–413, Jul. 2024, doi: 10.29303/ipr.v7i3.328.
[48] N. Novita, R. Ramlan, M. Naibaho, M. Ginting, S. Humaidi, and T. N. Duma, “Fe2O3 Review: Nanostructure, Synthesis Methods, and Applications,” International Journal of Social Service and Research, vol. 4, no. 02, pp. 539–559, Feb. 2024, doi: 10.46799/ijssr.v4i02.728.
[49] P. M. Parvathy Namboothiri and M. . Vasundhara, “Synthesis and characterization of nano-hematite,” Materials Today: Proceedings, vol. 92, pp. 1459–1463, 2023, doi: 10.1016/j.matpr.2023.05.652.
[50] D. Tulebayeva, A. Yermekova, A. Kozlovskiy, and M. Zdorovets, “Investigation of phase transformations of iron nanoparticles during thermal annealing,” EPJ Web of Conferences, vol. 201, p. 02003, Feb. 2019, doi: 10.1051/epjconf/201920102003.
[51] Q.-S. Fu, Y.-Q. Xue, Z.-X. Cui, and M.-F. Wang, “Study on the Size‐Dependent Oxidation Reaction Kinetics of Nanosized Zinc Sulfide,” Journal of Nanomaterials, vol. 2014, no. 1, p. 856489\, Jan. 2014, doi: 10.1155/2014/856489.
[52] S. H. Kayani, H. M. S. Ajmal, B.-J. Kim, N.-K. Park, and K. Euh, “Influence of Powder Size on Pore Characteristics and Intermetallic Phase Kinetics in Porous Ti-Al Alloys,” Crystals, vol. 14, no. 6, p. 559, Jun. 2024, doi: 10.3390/cryst14060559.
[53] A. Albrecht and D. Moszyński, “Nitriding and Denitriding of Nanocrystalline Iron System with Bimodal Crystallite Size Distribution,” Materials, vol. 15, no. 1, p. 143, Dec. 2021, doi: 10.3390/ma15010143.
[54] Y. Liu, Z. Yang, and H. Yang, “Magnetic and Electrochemical Properties of γ′-Fe 4 N Nanoparticles with Cuboidal and Rodlike Morphologies,” The Journal of Physical Chemistry C, vol. 127, no. 1, pp. 728–735, Jan. 2023, doi: 10.1021/acs.jpcc.2c07335.
[55] M. Yu, Y. Xu, Q. Mao, F. Li, and C. Wang, “Electromagnetic and absorption properties of nano-sized and micro-sized Fe 4 N particles,” Journal of Alloys and Compounds, vol. 656, pp. 362–367, Jan. 2016, doi: 10.1016/j.jallcom.2015.10.005.
[56] W. Yin et al., “Soft magnetic ε-Fe3N: Synthesis, characterization and magnetic properties,” Journal of Alloys and Compounds, vol. 688, pp. 828–832, Dec. 2016, doi: 10.1016/j.jallcom.2016.07.104.
[57] T. . Yamaguchi, M. . Sakita, M. . Nakamura, and T. . Kobira, “Synthesis and characteristics of Fe4N powders and thin films,” Journal of Magnetism and Magnetic Materials, vol. 215–216, pp. 529–531, Jun. 2000, doi: 10.1016/S0304-8853(00)00210-9.
[58] P. Palade et al., “Structural, Magnetic, and Mössbauer Investigation of Ordered Iron Nitride with Martensitic Structure Obtained from Amorphous Hematite Synthesized via the Microwave Route,” Industrial & Engineering Chemistry Research, vol. 56, no. 11, pp. 2958–2966, Mar. 2017, doi: 10.1021/acs.iecr.6b04574.