Experimental investigations of number of blades effect on archimedes spiral wind turbine performance

Main Article Content

Agus Dwi Korawan
Rosadila Febritasari

Abstract

This study investigates the effect of blade numbers on the performance of Archimedes Spiral Wind Turbines (ASWT), a low-speed axial flow turbine with an Archimedean spiral blade design. Experimental tests and numerical simulations were conducted to evaluate power generation and fluid flow behavior. Results revealed that a three-blade ASWT achieved optimal performance, producing 158.5% more power than the four-blade configuration. The findings highlight the significant influence of blade numbers on ASWT efficiency, offering insights for improving wind turbine design in urban renewable energy applications.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] B. M. Opeyemi, “Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy,” Energy, vol. 228, no. 120519, 2021, doi: 10.1016/j.energy.2021.120519.
[2] Amir shasavari; Azadeh Karimi ; Morteza Akbari; Mohammad Alizadeh Noughani, “Environmental Impacts and Social Cost of Non-Renewable and Renewable Energy Sources: A Comprehensive Review,” Journal of Renewable Energy and Environment, vol. 11, no. 1, 2024, doi: 10.30501/jree.2023.382598.1545.
[3] J. S. Yadav, K. Shirisha, and C. M. Rao, “Mini cold storage using the parabolic solar trough: An appropriate technology for perishable agricultural product,” Mechanical Engineering for Society and Industry, vol. 2, no. 1, pp. 35–41, 2022, doi: 10.31603/mesi.6368.
[4] S. Susilawati, A. Nugraha, A. S. S. Buchori, S. Rahayu, F. Fathurohman, and O. Yudiyanto, “Design and implementation of automatic fish feeder (AFF) using microcontroller powered by solar cell: A Contribution to the fish farmers,” Mechanical Engineering for Society and Industry, vol. 3, no. 1, pp. 47–53, Mar. 2023, doi: 10.31603/mesi.8276.
[5] R. A. Rahman, S. Sulistyo, M. S. K. T. S. Utomo, D. Ragil, and B. M. Suyitno, “Experimental evaluation on the power characteristic of direct-photovoltaic charging for thermal storage equipment,” Mechanical Engineering for Society and Industry, vol. 4, no. 1, pp. 115–122, Jul. 2024, doi: 10.31603/mesi.11493.
[6] Y. D. Herlambang et al., “Study on Solar Powered Electric Vehicle with Thermal Management Systems on the Electrical Device Performance,” Automotive Experiences, vol. 7, no. 1, pp. 18–27, 2024, doi: 10.31603/ae.10506.
[7] A. Supardi and A. H. F. Anisa, “Design of solar-powered automatic plant watering based on Internet of Things,” BIS Energy and Engineering, vol. 1, pp. V124026–V124026, 2024, doi: 10.31603/biseeng.83.
[8] A. Chaudhuri, R. Datta, M. P. Kumar, J. P. Davim, and S. Pramanik, “Energy Conversion Strategies for Wind Energy System: Electrical, Mechanical and Material Aspects,” Materials, vol. 15, no. 3, pp. 1–34, 2022, doi: 10.3390/ma15031232.
[9] H. M. Boulouiha, A. Allali, and M. Denai, “Chapter Nine - Grid Integration of Wind Energy Systems: Control Design, Stability, and Power Quality Issues,” M. G. Rasul, A. kalam Azad, and S. C. B. T.-C. E. for S. D. Sharma, Eds. Academic Press, 2017, pp. 239–335.
[10] A. A. Afif, P. Wulandari, and A. Syahriar, “CFD analysis of vertical axis wind turbine using ansys fluent,” Journal of Physics: Conference Series, vol. 1517, no. 1, 2020, doi: 10.1088/1742-6596/1517/1/012062.
[11] M. Kamran, Planning and modeling of wind energy systems. Elsevier, 2023.
[12] M. A. Al-Rawajfeh and M. R. Gomaa, “Comparison between horizontal and vertical axis wind turbine,” International Journal of Applied Power Engineering, vol. 12, no. 1, pp. 13–23, 2023, doi: 10.11591/ijape.v12.i1.pp13-23.
[13] E. Achdi, B. F. T. Kiono, S. H. Winoto, and M. Facta, “Improving cross-axis wind turbine performance: A Lab-scale investigation of rotor size and blades number,” Mechanical Engineering for Society and Industry, vol. 4, no. 1, pp. 82–91, Jul. 2024, doi: 10.31603/mesi.10837.
[14] Y. Dai, Z. Deng, B. Li, L. Zhong, and J. Wang, “Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines,” Fluid Dynamics & Materials Processing, vol. 20, no. 7, pp. 1517–1537, 2024, doi: 10.32604/fdmp.2024.046828.
[15] N. K. P, “Design and Flow Simulation Of An Archimedean Spiral-Type Wind Turbine Blade For Determining Velocity And Pressure Profile,” EPRA International Journal of Multidisciplinary Research (IJMR), vol. 7, no. 12, pp. 198–210, 2021, doi: 10.36713/epra2013.
[16] Y. K. Ke Song, Huiting Huan, “Aerodynamic Performance and Wake Characteristics Analysis,” Energies, vol. 16, no. 1, 2023, doi: 10.3390/en16010385.
[17] A. S. Ansari, T. Hussain, A. Hussain, and I. Ali, “Efficiency Analysis of Archimedes Wind Turbine Using CFD Technique,” International Journal of Scientific & Engineering Research, vol. 12, no. 3, pp. 51–55, 2021.
[18] K. C. Kim, H. S. Ji, Y. K. Kim, Q. Lu, J. H. Baek, and R. Mieremet, “Experimental and numerical study of the aerodynamic characteristics of an archimedes spiral wind turbine blade,” Energies, vol. 7, no. 12, pp. 7893–7914, 2014, doi: 10.3390/en7127893.
[19] M. Casini, “Small Vertical Axis Wind Turbines for Energy Efficiency of Buildings,” Journal of Clean Energy Technologies, vol. 4, no. 1, pp. 56–65, 2015, doi: 10.7763/jocet.2016.v4.254.
[20] Abdelaziz G. Refaie, H. S. A. Hameed, Y. A. A. Mohamed A.A. Nawar, and M. H. Mohamed, “Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines,” Energy, vol. 239, 2022, doi: 10.1016/j.energy.2021.122295.
[21] H. Hamid and R. M. Abd El Maksoud, “A comparative examination of the aerodynamic performance of various seashell-shaped wind turbines,” Heliyon, vol. 9, no. 6, p. e17036, 2023, doi: 10.1016/j.heliyon.2023.e17036.
[22] A. M. Kamal, M. A. A. Nawar, Y. A. Attai, and M. H. Mohamed, “Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations,” Energy, vol. 250, p. 123892, 2022, doi: 10.1016/j.energy.2022.123892.
[23] A. I. Siswantara, Warjito, Budiarso, R. Harmadi, M. H. Gumelar, and D. Adanta, “Investigation of the α angle’s effect on the performance of an Archimedes turbine,” Energy Procedia, vol. 156, pp. 458–462, 2019, doi: 10.1016/j.egypro.2018.11.084.
[24] A. Bhattarai, H. P. Bashyal, S. Sapkota, and U. Nepal, “Design, CFD Analysis and Modelling of Archimedean-Spiral type Wind Turbine,” no. January 2016, pp. 1–83, 2019.
[25] E. H. Herraprastanti and W. Agung Saputro, “Simulation of Opening Angle of Archimedes Wind Turbine Design Based on the Fibonacci Series,” International Journal of Engineering, Science and Information Technology, vol. 2, no. 1, pp. 50–57, 2021, doi: 10.52088/ijesty.v2i1.192.
[26] A. M. Labib, A. F. A. Gawad, and M. M. Nasseif, “Effect of Blade Angle on Aerodynamic Performance of Archimedes Spiral Wind Turbine,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 78, no. 1, pp. 122–136, 2020, doi: 10.37934/ARFMTS.78.1.122136.
[27] M. H. M. Mohamed A.A. Nawar, H.S. Abdel Hameed, A. Ramadan, Youssef A. Attai, “Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance,” Energy, vol. 223, no. 120051, 2021, doi: 10.1016/j.energy.2021.120051.
[28] A. Khan, A. Khattak, A. Ulasyar, K. Imran, and M. A. Munir, “Investigation of Archimedean Screw Turbine for Optimal Power Output by Varying Number of Blades,” 1st International Conference on Electrical, Communication and Computer Engineering, ICECCE 2019, no. July, pp. 1–6, 2019, doi: 10.1109/ICECCE47252.2019.8940654.
[29] K. Kashyap, R. Thakur, R. Kumar, and S. Kumar, “Feasibility analysis for conversion of existing traditional watermills in Western Himalayan region of India to micro-hydropower plants using a low head Archimedes screw turbine for rural electrification,” International Journal of Ambient Energy, vol. 43, no. 1, pp. 7463–7473, 2022, doi: 10.1080/01430750.2022.2068056.
[30] C. E. S. Juan Manuel De Egea Juvinel , Diego P. Pinto Roa, “Structural and Shape Optimization in Aerodynamic Airfoil Performance: A Literature Review,” Preprints, 2023, doi: 10.20944/preprints202307.0807.
[31] A. T. Mustafa; and H. A. Jaleel, “A comparison study between Archimedes spiral turbine and propeller turbine with wind attack angle effect,” AIP Conference Proceedings, vol. 1, 2020.
[32] S. Rao, K. Shanmukesh, M. K. Naidu, and Praveen Kalla, “Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds,” International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE), vol. 5, no. August, pp. 1–5, 2018.
[33] Conrado Ostia, J. M. Martinez, and K. T. Coderes, “Development of a Dual Wind Turbines using the Savonius and Archimedes Spiral Principle,” EEE 10th international conference on humanoid, nanotechnology, information technology, communication and control, Environment and Management (HNICEM), pp. 1–5, 2018.
[34] K. Kashyap, R. Thakur, S. Kumar, and Rajkumar, “Identification of archimedes screw turbine for efficient conversion of traditional water mills (gharats) into micro hydro-power stations in Western Himalayan Regions of India: An experimental analysis,” International Journal of Renewable Energy Research, vol. 10, no. 3, pp. 1451–1463, 2020, doi: 10.20508/ijrer.v10i3.11176.g8020.
[35] N. Kumar Thakur, R. Thakur, K. Kashyap, and B. Goel, “Efficiency enhancement in Archimedes screw turbine by varying different input parameters - An experimental study,” Materials Today: Proceedings, vol. 52, pp. 1161–1167, 2022, doi: 10.1016/j.matpr.2021.11.020.
[36] M. D. Lee and P. S. Lee, “Modelling the Energy Extraction from Low-Velocity Stream Water by Small Scale Archimedes Screw Turbine,” Journal of King Saud University - Engineering Sciences, vol. 35, no. 5, pp. 319–326, 2023, doi: 10.1016/j.jksues.2021.04.006.
[37] A. Rezaeiha, H. Montazeri, and B. Blocken, “On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines,” Energy, vol. 180, pp. 838–857, 2019, doi: 10.1016/j.energy.2019.05.053.
[38] W. Huang, W. Liu, S. Li, and Z. Xia, “Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows,” Acta Astronautica, vol. 73, pp. 1–9, 2012, doi: 10.1016/j.actaastro.2011.12.003.
[39] B. R. Munson, D. F. Young, and T. H. Okiishi, “Fundamentals of fluid mechanics,” 1994, doi: 10.1201/b11709-7.
[40] A. R. Coughtrie, D. J. Borman, and P. A. Sleigh, “Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester,” Bioresour Technol, vol. 138, pp. 297–306, 2013, doi: 10.1016/j.biortech.2013.03.162.
[41] O. S. Samiani and M. Boroushaki, “Optimal design of Archimedes Wind Turbine using genetic algorithm,” vol. 314, no. November 2024, 2025.