Improving poultry system in close house cage through advanced HVAC design: A Review of evaporative cooling pads and energy efficiency in broiler cages

Main Article Content

Zain Lillahulhaq
https://orcid.org/0000-0003-2318-9072
Wawan Aries Widodo
https://orcid.org/0000-0002-1316-6697
Sutardi Sutardi
https://orcid.org/0000-0002-3019-2686
Luthfi Hakim
Anton Nugroho
https://orcid.org/0009-0003-4379-4269

Abstract

Improving the quality and quantity of livestock production can be achieved by creating a comfortable and safe environment for animals. The use of closed-house pens is one of the methods employed to control temperature, humidity, airflow, and the cleanliness of the living space for animals. Close-house pens are equipped with Heating, Ventilation, and Air Conditioning (HVAC), including the combination of an Evaporative Cooling Pad (ECP) and an exhaust fan. The characteristics of the shape and material composition of the ECP components influence pressure drop and the flow pattern entering the room. This research focuses on reviewing papers related to the development of numerical simulation studies of close-house pens and ECP. The design of numerical simulations and the selection of boundary conditions enhance the precision and error level of predicting fluid flow distribution in closed-house cages. In addition to numerical simulations, the application of energy management calculations provides recommendations regarding the combination of HVAC design and environmental control parameters that need to be considered.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] X. Tong, S.-W. Hong, and L. Zhao, “CFD modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation,” Biosystems Engineering, vol. 178, pp. 275–293, 2019, doi: 10.1016/j.biosystemseng.2018.08.008.
[2] D. Fidaros, C. Baxevanou, T. Bartzanas, and C. Kittas, “Numerical study of mechanically ventilated broiler house equipped with evaporative pads,” Computers and Electronics in Agriculture, vol. 149, pp. 101–109, 2018, doi: 10.1016/j.compag.2017.10.016.
[3] Vikas, A. Yadav, M. Kumar Yadav, and S. Samir, “Phase change materials for comfort management of poultry farms- A review,” Materials Today: Proceedings, vol. 56, pp. 2568–2575, 2022, doi: 10.1016/j.matpr.2021.09.152.
[4] A. A. Saleh et al., “Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature,” Agriculture, vol. 11, no. 2, p. 185, 2021, doi: 10.3390/agriculture11020185.
[5] W. Wu, Z. Tong, G. Zhang, A. Malkawi, X. Wang, and J. Benner, “An energy efficient hydraulic system to cool manure and reduce ammonia emissions from livestock buildings,” Journal of Cleaner Production, vol. 235, pp. 920–929, 2019, doi: 10.1016/j.jclepro.2019.07.036.
[6] V. O. Sumanu, V. Naidoo, M. C. Oosthuizen, and J. P. Chamunorwa, “Adverse effects of heat stress during summer on broiler chickens production and antioxidant mitigating effects,” International Journal of Biometeorology, vol. 66, no. 12, pp. 2379–2393, 2022, doi: 10.1007/s00484-022-02372-5.
[7] A. Costantino, E. Fabrizio, A. Biglia, P. Cornale, and L. Battaglini, “Energy Use for Climate Control of Animal Houses: The State of the Art in Europe,” Energy Procedia, vol. 101, pp. 184–191, 2016, doi: 10.1016/j.egypro.2016.11.024.
[8] A. Costantino, E. Fabrizio, A. Ghiggini, and M. Bariani, “Climate control in broiler houses: A thermal model for the calculation of the energy use and indoor environmental conditions,” Energy and Buildings, vol. 169, pp. 110–126, 2018, doi: 10.1016/j.enbuild.2018.03.056.
[9] Y. Wang, B. Li, C. Liang, and W. Zheng, “Dynamic simulation of thermal load and energy efficiency in poultry buildings in the cold zone of China,” Computers and Electronics in Agriculture, vol. 168, p. 105127, 2020, doi: 10.1016/j.compag.2019.105127.
[10] E. Bustamante, S. Calvet, F. Estellés, A. G. Torres, and A. Hospitaler, “Measurement and numerical simulation of single-sided mechanical ventilation in broiler houses,” Biosystems Engineering, vol. 160, pp. 55–68, 2017, doi: 10.1016/j.biosystemseng.2017.05.009.
[11] Y. Wang, W. Zheng, B. Li, and X. Li, “A new ventilation system to reduce temperature fluctuations in laying hen housing in continental climate,” Biosystems Engineering, vol. 181, pp. 52–62, 2019, doi: 10.1016/j.biosystemseng.2019.02.017.
[12] K. A. Saner and S. P. Shekhawat, “Design and Analysis of Ventilation System for Closed Poultry House in Tropical Climate Conditions,” Journal of World’s Poultry Research, 2023, doi: 10.36380/jwpr.2023.35.
[13] G. Park, I. Lee, U. Yeo, T. Ha, R. Kim, and S. Lee, “Ventilation rate formula for mechanically ventilated broiler houses considering aerodynamics and ventilation operating conditions,” Biosystems Engineering, vol. 175, pp. 82–95, 2018, doi: 10.1016/j.biosystemseng.2018.09.002.
[14] H. Fawaz, M. G. Abiad, N. Ghaddar, and K. Ghali, “Solar-assisted localized ventilation system for poultry brooding,” Energy and Buildings, vol. 71, pp. 142–154, 2014, doi: 10.1016/j.enbuild.2013.12.021.
[15] J. P. Harrouz, D. Al Assaad, M. Orabi, K. Ghali, D. Ouahrani, and N. Ghaddar, “Modeling and optimization of poultry house passive cooling strategies in semiarid climates,” International Journal of Energy Research, vol. 45, no. 15, pp. 20795–20811, 2021, doi: 10.1002/er.7139.
[16] Y. Boutera, N. Boultif, A. Rouag, C. Beldjani, and N. Moummi, “Performance of earth-air heat exchanger in cooling, heating, and reducing carbon emissions of an industrial poultry farm: A case study,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 44, no. 4, pp. 9564–9583, 2022, doi: 10.1080/15567036.2022.2132323.
[17] Z. Yang, Y. Tu, H. Ma, X. Yang, and C. Liang, “Numerical simulation of a novel double-duct ventilation system in poultry buildings under the winter condition,” Building and Environment, vol. 207, p. 108557, 2022, doi: 10.1016/j.buildenv.2021.108557.
[18] C. Baxevanou, D. Fidaros, T. Bartzanas, and C. Kittas, “Energy Consumption and Energy Saving Measures in Poultry,” Energy and Environmental Engineering, vol. 5, no. 2, pp. 29–36, 2017, doi: 10.13189/eee.2017.050201.
[19] T. Kalhor, A. Rajabipour, A. Akram, and M. Sharifi, “Modeling of energy ratio index in broiler production units using artificial neural networks,” Sustainable Energy Technologies and Assessments, vol. 17, pp. 50–55, 2016, doi: 10.1016/j.seta.2016.09.002.
[20] Y. Liang and T. Costello, “Measurement of Dynamic Electric Consumption Trend in a Broiler House in Arkansas,” Applied Engineering in Agriculture, vol. 40, no. 1, pp. 143–150, 2024, doi: 10.13031/aea.15869.
[21] M. Setiyo et al., “Vapor compression refrigeration system with air and water cooled condenser: Analysis of thermodynamic behavior and energy efficiency ratio,” Teknomekanik, vol. 7, no. 2, pp. 112–125, Dec. 2024, doi: 10.24036/teknomekanik.v7i2.31972.
[22] I. D. F. F. Tinoco, J. A. Osorio, F. A. Damasceno, R. S. Gates, K. S. Rocha, and O. L. Zapata, “3D-CFD Modeling of a Typical Uninsulated and Internal Misting Tunnel Ventilated Brazilian Poultry House,” 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. American Society of Agricultural and Biological Engineers, 2010, doi: 10.13031/2013.29817.
[23] J. P. Harrouz, E. Katramiz, K. Ghali, D. Ouahrani, and N. Ghaddar, “Comparative analysis of sustainable desiccant – Evaporative based ventilation systems for a typical Qatari poultry house,” Energy Conversion and Management, vol. 245, p. 114556, 2021, doi: 10.1016/j.enconman.2021.114556.
[24] Y. Wang, W. Zheng, Q. Tong, and B. Li, “Reducing dust deposition and temperature fluctuations in the laying hen houses of Northwest China using a surge chamber,” Biosystems Engineering, vol. 175, pp. 206–218, 2018, doi: 10.1016/j.biosystemseng.2018.09.016.
[25] A. Costantino, E. Fabrizio, and S. Calvet, “The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use,” Applied Sciences, vol. 11, no. 20, p. 9549, 2021, doi: 10.3390/app11209549.
[26] E. Bustamante, F.-J. García-Diego, S. Calvet, A. Torres, and A. Hospitaler, “Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House,” Sustainability, vol. 7, no. 2, pp. 2066–2085, 2015, doi: 10.3390/su7022066.
[27] H. Ma, Y. Tu, X. Yang, Z. Yang, and C. Liang, “Influence of tunnel ventilation on the indoor thermal environment of a poultry building in winter,” Building and Environment, vol. 223, p. 109448, 2022, doi: 10.1016/j.buildenv.2022.109448.
[28] Y. Wang, X. Cheng, Y. Li, X. Wang, and Y. Wang, “Cooling Effect of Minimum Fresh Air Volume on a Super-Long Poultry House in Early Winter,” 2022 7th International Conference on Power and Renewable Energy (ICPRE). IEEE, pp. 1191–1199, 2022, doi: 10.1109/icpre55555.2022.9960558.
[29] A. Bor, M. Szabo-Meszaros, K. Vereide, and L. Lia, “Application of Three-Dimensional CFD Model to Determination of the Capacity of Existing Tyrolean Intake,” Water, vol. 16, no. 5, p. 737, 2024, doi: 10.3390/w16050737.
[30] A. Kianimoqadam and J. L. Lapp, “Asynchronous GPU-based DEM solver embedded in commercial CFD software with polyhedral mesh support,” Powder Technology, vol. 444, p. 120040, 2024, doi: 10.1016/j.powtec.2024.120040.
[31] Z. Lu, M. H. A. Piro, and M. A. Christon, “Mesh and turbulence model sensitivity analyses of computational fluid dynamic simulations of a 37M CANDU fuel bundle,” Nuclear Engineering and Technology, vol. 54, no. 11, pp. 4296–4309, 2022, doi: 10.1016/j.net.2022.06.004.
[32] T. Glatzel et al., “Computational fluid dynamics (CFD) software tools for microfluidic applications – A case study,” Computers & Fluids, vol. 37, no. 3, pp. 218–235, 2008, doi: 10.1016/j.compfluid.2007.07.014.
[33] W. Purwanto et al., “Optimal design of stator slot with semi-closed type to maximize magnetic flux connection and reduce iron leakage in high-speed spindle drives,” Mechanical Engineering for Society and Industry, vol. 4, no. 1, pp. 5–16, Apr. 2024, doi: 10.31603/mesi.10492.
[34] A. Erb and S. Hosder, “Analysis and comparison of turbulence model coefficient uncertainty for canonical flow problems,” Computers & Fluids, vol. 227, p. 105027, 2021, doi: 10.1016/j.compfluid.2021.105027.
[35] E. Fabian, L. Chen, D. Hofstetter, P. Patterson, and J. Cimbala, “Modeling Hen House Ventilation Options for Cage-free Environment: Two-Dimensional Case,” 10th International Livestock Environment Symposium (ILES X). American Society of Agricultural and Biological Engineers, 2018, doi: 10.13031/iles.18-145.
[36] F. Coulombe, D. R. Rousse, and P.-L. Paradis, “CFD simulations to improve air distribution inside cold climate broiler houses involving heat exchangers,” Biosystems Engineering, vol. 198, pp. 105–118, 2020, doi: 10.1016/j.biosystemseng.2020.07.015.
[37] J. A. Osorio Saraz, I. de F. Ferreira Tinôco, K. S. Olivera Rocha, L. Barreto Mendes, and T. Norton, “A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation,” Revista Facultad Nacional de Agronomía Medellín, vol. 69, no. 1, pp. 7825–7834, 2016, doi: 10.15446/rfna.v69n1.54750.
[38] X. Wang, G. Zhang, and C. Y. Choi, “Effect of airflow speed and direction on convective heat transfer of standing and reclining cows,” Biosystems Engineering, vol. 167, pp. 87–98, 2018, doi: 10.1016/j.biosystemseng.2017.12.011.
[39] J. D. Bustos-Vanegas, S. Hempel, D. Janke, M. Doumbia, J. Streng, and T. Amon, “Numerical simulation of airflow in animal occupied zones in a dairy cattle building,” Biosystems Engineering, vol. 186, pp. 100–105, 2019, doi: 10.1016/j.biosystemseng.2019.07.002.
[40] Q. Cheng, W. Wu, H. Li, G. Zhang, and B. Li, “CFD study of the influence of laying hen geometry, distribution and weight on airflow resistance,” Computers and Electronics in Agriculture, vol. 144, pp. 181–189, 2018, doi: 10.1016/j.compag.2017.12.003.
[41] H. Li, L. Rong, C. Zong, and G. Zhang, “A numerical study on forced convective heat transfer of a chicken (model) in horizontal airflow,” Biosystems Engineering, vol. 150, pp. 151–159, 2016, doi: 10.1016/j.biosystemseng.2016.08.005.
[42] F. Rojano, P.-E. Bournet, M. Hassouna, P. Robin, M. Kacira, and C. Y. Choi, “Computational modelling of thermal and humidity gradients for a naturally ventilated poultry house,” Biosystems Engineering, vol. 151, pp. 273–285, 2016, doi: 10.1016/j.biosystemseng.2016.09.012.
[43] M. Jin, C. Wang, and P. Wang, “CFD NUMERICAL SIMULATION OF TEMPERATURE AND AIRFLOW DISTRIBUTION IN PIGSTY BASED ON GRID INDEPENDENCE VERIFICATION,” INMATEH Agricultural Engineering, vol. 61, no. 2, pp. 241–250, 2020, doi: 10.35633/inmateh-61-27.
[44] D. K. Al Assaad et al., “A sustainable localised air distribution system for enhancing thermal environment and indoor air quality of poultry house for semiarid region,” Biosystems Engineering, vol. 203, pp. 70–92, 2021, doi: 10.1016/j.biosystemseng.2021.01.002.
[45] J. L. Drewry, C. Y. Choi, J. M. Powell, and B. D. Luck, “Computational model of methane and ammonia emissions from dairy barns: Development and validation,” Computers and Electronics in Agriculture, vol. 149, pp. 80–89, 2018, doi: 10.1016/j.compag.2017.07.012.
[46] H. Xue et al., “Effect of cooling pad installation on indoor airflow distribution in a tunnel-ventilated laying-hen house,” International Journal of Agricultural and Biological Engineering, vol. 9, no. 4, pp. 169–177, 2016.
[47] S. Zhang et al., “Simulation Analysis of a Ventilation System in a Smart Broiler Chamber Based on Computational Fluid Dynamics,” Atmosphere, vol. 10, no. 6, p. 315, 2019, doi: 10.3390/atmos10060315.
[48] L. Chen, E. E. Fabian-Wheeler, J. M. Cimbala, D. Hofstetter, and P. Patterson, “Computational Fluid Dynamics Modeling of Ventilation and Hen Environment in Cage-Free Egg Facility,” Animals : an open access journal from MDPI, vol. 10, no. 6, p. 1067, Jun. 2020, doi: 10.3390/ani10061067.
[49] L. Chen, E. E. Fabian-Wheeler, J. M. Cimbala, D. Hofstetter, and P. Patterson, “Numerical Simulation of Airborne Disease Spread in Cage-Free Hen Housing with Multiple Ventilation Options,” Animals : an open access journal from MDPI, vol. 12, no. 12, p. 1516, Jun. 2022, doi: 10.3390/ani12121516.
[50] M. R. Mondaca, C. Y. Choi, and N. B. Cook, “Understanding microenvironments within tunnel-ventilated dairy cow freestall facilities: Examination using computational fluid dynamics and experimental validation,” Biosystems Engineering, vol. 183, pp. 70–84, 2019, doi: 10.1016/j.biosystemseng.2019.04.014.
[51] L. Du et al., “Investigation of bio-aerosol dispersion in a tunnel-ventilated poultry house,” Computers and Electronics in Agriculture, vol. 167, p. 105043, 2019, doi: 10.1016/j.compag.2019.105043.
[52] N. Tomasello, F. Valenti, G. Cascone, and S. M. C. Porto, “Development of a CFD Model to Simulate Natural Ventilation in a Semi-Open Free-Stall Barn for Dairy Cows,” Buildings, vol. 9, no. 8, p. 183, 2019, doi: 10.3390/buildings9080183.
[53] H. Li, L. Rong, C. Zong, and G. Zhang, “Assessing response surface methodology for modelling air distribution in an experimental pig room to improve air inlet design based on computational fluid dynamics,” Computers and Electronics in Agriculture, vol. 141, pp. 292–301, 2017, doi: 10.1016/j.compag.2017.08.009.
[54] A. Van Wagenberg, B. Bjerg, and G. Bot, “Measurement and simulation of climatic conditions in the animal occupied zone in a door ventilated room for piglets,” 2004.
[55] K. Ahmadi Babadi, H. Khorasanizadeh, and A. Aghaei, “CFD modeling of air flow, humidity, CO2 and NH3 distributions in a caged laying hen house with tunnel ventilation system,” Computers and Electronics in Agriculture, vol. 193, p. 106677, 2022, doi: 10.1016/j.compag.2021.106677.
[56] T. Norton, J. Grant, R. Fallon, and D.-W. Sun, “Optimising the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity,” Building and Environment, vol. 45, no. 4, pp. 983–995, 2010, doi: 10.1016/j.buildenv.2009.10.005.
[57] C. Qin, X. Wang, G. Zhang, Q. Yi, Y. He, and K. Wang, “Effects of the slatted floor layout on flow pattern in a manure pit and ammonia emission from pit-A CFD study,” Computers and Electronics in Agriculture, vol. 177, p. 105677, 2020, doi: 10.1016/j.compag.2020.105677.
[58] X. Wei et al., “Numerical Simulation of Airflow Distribution in a Pregnant Sow Piggery with Centralized Ventilation,” Applied Sciences, vol. 12, no. 22, p. 11556, 2022, doi: 10.3390/app122211556.
[59] J. Hu et al., “Experiment and numerical simulation on the fine particle migration behaviors for the collection efficiency enhancement of a wire-plate electrostatic precipitator in pig house,” Computers and Electronics in Agriculture, vol. 199, p. 107145, 2022, doi: 10.1016/j.compag.2022.107145.
[60] B. Bjerg, “CFD Analyses of Methods to Improve Air Quality and Efficiency of Air Cleaning in Pig Production.,” Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality. InTech, 2011, doi: 10.5772/19302.
[61] E. Bustamante et al., “Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm,” Energies, vol. 6, no. 5, pp. 2605–2623, 2013, doi: 10.3390/en6052605.
[62] L. Rong and A. J. A. Aarnink, “Development of ammonia mass transfer coefficient models for the atmosphere above two types of the slatted floors in a pig house using computational fluid dynamics,” Biosystems Engineering, vol. 183, pp. 13–25, 2019, doi: 10.1016/j.biosystemseng.2019.04.011.
[63] L. Du et al., “Computational Fluid Dynamics aided investigation and optimization of a tunnel-ventilated poultry house in China,” Computers and Electronics in Agriculture, vol. 159, pp. 1–15, 2019, doi: 10.1016/j.compag.2019.02.020.
[64] F. Rojano, P.-E. Bournet, M. Hassouna, P. Robin, M. Kacira, and C. Y. Choi, “Modelling the impact of air discharges caused by natural ventilation in a poultry house,” Biosystems Engineering, vol. 180, pp. 168–181, 2019, doi: 10.1016/j.biosystemseng.2019.02.001.
[65] K. G. Gebremedhin and B. X. Wu, “Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment,” Journal of Thermal Biology, vol. 28, no. 4, pp. 301–319, 2003, doi: 10.1016/s0306-4565(03)00007-x.
[66] E. Küçüktopcu, B. Cemek, H. Simsek, and J.-Q. Ni, “Computational Fluid Dynamics Modeling of a Broiler House Microclimate in Summer and Winter,” Animals : an open access journal from MDPI, vol. 12, no. 7, p. 867, Mar. 2022, doi: 10.3390/ani12070867.
[67] B. Bjerg et al., “Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling,” Biosystems Engineering, vol. 116, no. 3, pp. 259–275, 2013, doi: 10.1016/j.biosystemseng.2013.06.012.
[68] T. Norton, D.-W. Sun, J. Grant, R. Fallon, and V. Dodd, “Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review,” Bioresource Technology, vol. 98, no. 12, pp. 2386–2414, 2007, doi: 10.1016/j.biortech.2006.11.025.
[69] D. Janke et al., “On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn,” Computers and Electronics in Agriculture, vol. 175, p. 105546, 2020, doi: 10.1016/j.compag.2020.105546.
[70] T. Norton, J. Grant, R. Fallon, and D.-W. Sun, “Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics,” Biosystems Engineering, vol. 103, no. 1, pp. 78–99, 2009, doi: 10.1016/j.biosystemseng.2009.02.007.
[71] X. Wang et al., “Effect of Fans’ Placement on the Indoor Thermal Environment of Typical Tunnel-Ventilated Multi-Floor Pig Buildings Using Numerical Simulation,” Agriculture, vol. 12, no. 6, p. 891, 2022, doi: 10.3390/agriculture12060891.
[72] Q. Yi et al., “Modelling air change rate of naturally ventilated dairy buildings using response surface methodology and numerical simulation,” Building Simulation, vol. 14, no. 3, pp. 827–839, 2020, doi: 10.1007/s12273-020-0697-z.
[73] L. Rong, D. Liu, E. F. Pedersen, and G. Zhang, “The effect of wind speed and direction and surrounding maize on hybrid ventilation in a dairy cow building in Denmark,” Energy and Buildings, vol. 86, pp. 25–34, 2015, doi: 10.1016/j.enbuild.2014.10.016.
[74] Q. Cheng, H. Feng, H. Meng, and H. Zhou, “CFD study of the effect of inlet position and flap on the airflow and temperature in a laying hen house in summer,” Biosystems Engineering, vol. 203, pp. 109–123, 2021, doi: 10.1016/j.biosystemseng.2021.01.009.
[75] K. G. Gebremedhin and B. Wu, “Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions,” Journal of Thermal Biology, vol. 30, no. 5, pp. 343–353, 2005, doi: 10.1016/j.jtherbio.2004.10.001.
[76] S. M. Derakhshani, N. W. M. Ogink, B. A. P. Bos, and P. W. G. Groot Koerkamp, “Sensitivity analysis of fine dust spreading from litter in poultry houses,” Biosystems Engineering, vol. 208, pp. 272–286, 2021, doi: 10.1016/j.biosystemseng.2021.06.004.
[77] S. Zhang, L. Zhou, L. Jia, J. Li, B. Liu, and Y. Yuan, “Numerical Simulation on Particulate Matter Emissions from a Layer House during Summer in Northeast China,” Atmosphere, vol. 13, no. 3, p. 435, 2022, doi: 10.3390/atmos13030435.
[78] M. Toghyani, A. Gheisari, M. Modaresi, S. A. Tabeidian, and M. Toghyani, “Effect of different litter material on performance and behavior of broiler chickens,” Applied Animal Behaviour Science, vol. 122, no. 1, pp. 48–52, 2010, doi: 10.1016/j.applanim.2009.11.008.
[79] J. A. O. Saraz, K. S. O. Rocha, F. A. Damasceno, I. F. F. Tinoco, R. Osorio, and J. C. A. Tobón, “A CFD approach to assess the effects of different opening combinations in poultry houses,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 21, no. 12, pp. 852–857, 2017, doi: 10.1590/1807-1929/agriambi.v21n12p852-857.
[80] S. Wasti, N. Sah, and B. Mishra, “Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies,” Animals : an open access journal from MDPI, vol. 10, no. 8, p. 1266, Jul. 2020, doi: 10.3390/ani10081266.
[81] Y. Liang, G. T. Tabler, and S. Dridi, “Sprinkler Technology Improves Broiler Production Sustainability: From Stress Alleviation to Water Usage Conservation: A Mini Review,” Frontiers in veterinary science, vol. 7, p. 544814, Sep. 2020, doi: 10.3389/fvets.2020.544814.
[82] D. Bae, K.-Y. Song, D. M. Macoy, M. G. Kim, C.-K. Lee, and Y.-S. Kim, “Inactivation of Airborne Avian Pathogenic E. coli (APEC) via Application of a Novel High-Pressure Spraying System,” Microorganisms, vol. 10, no. 11, p. 2201, Nov. 2022, doi: 10.3390/microorganisms10112201.
[83] R. U. Khan et al., “Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies,” Animal Biotechnology, vol. 34, no. 2, pp. 438–447, 2021, doi: 10.1080/10495398.2021.1972005.
[84] F. A. Obando Vega, A. P. Montoya Ríos, J. A. Osorio Saraz, R. R. Andrade, F. A. Damasceno, and M. Barbari, “CFD Study of a Tunnel-Ventilated Compost-Bedded Pack Barn Integrating an Evaporative Pad Cooling System,” Animals : an open access journal from MDPI, vol. 12, no. 14, p. 1776, Jul. 2022, doi: 10.3390/ani12141776.
[85] A. Çaylı, A. Akyüz, S. Üstün, and B. Yeter, “Efficiency of two different types of evaporative cooling systems in broiler houses in Eastern Mediterranean climate conditions,” Thermal Science and Engineering Progress, vol. 22, p. 100844, 2021, doi: 10.1016/j.tsep.2021.100844.
[86] “Energy Consumption and Indoor Environment of Broiler Houses with Energy Recovery Ventilators,” Applied Engineering in Agriculture, pp. 751–759, 2013, doi: 10.13031/aea.29.9968.
[87] K. A. O. Lima, D. J. Moura, T. M. R. Carvalho, L. G. F. Bueno, and R. A. Vercellino, “Ammonia emissions in tunnel-ventilated broiler houses,” Revista Brasileira de Ciência Avícola, vol. 13, no. 4, pp. 265–270, 2011, doi: 10.1590/s1516-635x2011000400008.
[88] M. Dağtekin, C. Karaca, and Y. Yıldız, “Performance characteristics of a pad evaporative cooling system in a broiler house in a Mediterranean climate,” Biosystems Engineering, vol. 103, no. 1, pp. 100–104, 2009, doi: 10.1016/j.biosystemseng.2009.02.011.
[89] A. Laknizi, M. Mahdaoui, A. Ben Abdellah, K. Anoune, M. Bakhouya, and H. Ezbakhe, “Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco,” Case Studies in Thermal Engineering, vol. 13, p. 100362, 2019, doi: 10.1016/j.csite.2018.11.013.
[90] L. Rong, P. Pedersen, T. L. Jensen, S. Morsing, and G. Zhang, “Dynamic performance of an evaporative cooling pad investigated in a wind tunnel for application in hot and arid climate,” Biosystems Engineering, vol. 156, pp. 173–182, 2017, doi: 10.1016/j.biosystemseng.2017.02.003.
[91] B. Acar, N. Uğurlu, and S. U. Seyfi, “Production performance of caged layers in evaporative cooling and mechanical ventilated housing,” 2013.
[92] J. Xu, Y. Li, R. Z. Wang, W. Liu, and P. Zhou, “Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates,” Applied Energy, vol. 138, pp. 291–301, 2015, doi: 10.1016/j.apenergy.2014.10.061.
[93] A. Tejero-González and A. Franco-Salas, “Optimal operation of evaporative cooling pads: A review,” Renewable and Sustainable Energy Reviews, vol. 151, p. 111632, 2021, doi: 10.1016/j.rser.2021.111632.
[94] F. A. Obando Vega, A. P. Montoya Rios, J. A. Osorio Saraz, F. A. Damasceno, and M. Barbari, “Comparative Analysis of the Cooling Efficiency in Tropical Climate of Three Alternative Materials for Evaporative Cooling Pads,” Applied Sciences, vol. 12, no. 1, p. 77, 2021, doi: 10.3390/app12010077.
[95] J. Wang et al., “Impacts of the water absorption capability on the evaporative cooling effect of pervious paving materials,” Building and Environment, vol. 151, pp. 187–197, 2019, doi: 10.1016/j.buildenv.2019.01.033.
[96] M. S. Rahman, S. MacPherson, and M. Lefsrud, “Experimental investigation of a novel evaporative cooling pad made of cement-free porous concrete,” Building and Environment, vol. 228, p. 109867, 2023, doi: 10.1016/j.buildenv.2022.109867.
[97] M. Ghoname, “The Assessment of Pad-Fan Evaporative Cooling System in Broiler Housing تقدیر معاییر نظام وسادة – مروحة للتبرید بالتبخیر فى مساکن دجاج التسمین,” Journal of Soil Sciences and Agricultural Engineering, vol. 11, no. 8, pp. 455–466, 2020, doi: 10.21608/jssae.2020.114880.
[98] A. Franco, D. L. Valera, A. Madueño, and A. Peña, “Influence of Water and Air Flow on the Performance of Cellulose Evaporative Cooling Pads Used in Mediterranean Greenhouses,” Transactions of the ASABE, vol. 53, no. 2, pp. 565–576, 2010, doi: 10.13031/2013.29571.
[99] X. Wang and K. Wang, “Optimizing the Pad Cooling Ventilation System of Laying Hen Barn Using CFD in Southeast China,” 2013 Kansas City, Missouri, July 21 - July 24, 2013. American Society of Agricultural and Biological Engineers, 2013, doi: 10.13031/aim.20131620039.
[100] M. S. Ghoname, “Effect of pad water flow rate on evaporative cooling system efficiency in laying hen housing,” Journal of Agricultural Engineering, vol. 51, no. 4, pp. 209–219, 2020, doi: 10.4081/jae.2020.1051.
[101] S. Abdel-Rahman, “Performance Evaluation of Poultry Houses Under Different Evaporative Cooling Systems,” Zagazig Journal of Agricultural Research, vol. 47, no. 4, pp. 999–1010, 2020, doi: 10.21608/zjar.2020.110328.
[102] M. W. Dunlop and J. McAuley, “Direct surface wetting sprinkler system to reduce the use of evaporative cooling pads in meat chicken production: indoor thermal environment, water usage, litter moisture content, live market weights, and mortalities,” Poultry science, vol. 100, no. 7, p. 101201, Jul. 2021, doi: 10.1016/j.psj.2021.101201.
[103] M. Jaradat et al., “Liquid desiccant systems for cooling applications in broilers farms in humid subtropical climates,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101902, 2022, doi: 10.1016/j.seta.2021.101902.
[104] T. O. Ahmadu, Y. S. Sanusi, and F. Usman, “Experimental evaluation of a modified direct evaporative cooling system combining luffa fiber—charcoal cooling pad and activated carbon dehumidifying pad,” Journal of Engineering and Applied Science, vol. 69, no. 1, 2022, doi: 10.1186/s44147-022-00116-1.
[105] “ANSYS FLUENT 12.0 User’s Guide - 7.2.3 Porous Media Conditions.” Dec. 26, 2024, [Online]. Available: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node233.htm.
[106] A. Franco, D. L. Valera, A. Peña, and A. M. Pérez, “Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses,” Computers and Electronics in Agriculture, vol. 76, no. 2, pp. 218–230, 2011, doi: 10.1016/j.compag.2011.01.019.
[107] S. Suranjan Salins, S. V. K. Reddy, and S. Kumar, “Experimental investigation on use of alternative innovative materials for sustainable cooling applications,” International Journal of Sustainable Engineering, vol. 14, no. 5, pp. 1207–1217, 2021, doi: 10.1080/19397038.2021.1924894.
[108] A. Malli, H. R. Seyf, M. Layeghi, S. Sharifian, and H. Behravesh, “Investigating the performance of cellulosic evaporative cooling pads,” Energy Conversion and Management, vol. 52, no. 7, pp. 2598–2603, 2011, doi: 10.1016/j.enconman.2010.12.015.
[109] N. K. Sakomura, “Modeling energy utilization in broiler breeders, laying hens and broilers,” Revista Brasileira de Ciência Avícola, vol. 6, no. 1, pp. 1–11, 2004, doi: 10.1590/s1516-635x2004000100001.
[110] N. K. Sakomura, F. A. Longo, E. O. Oviedo-Rondon, C. Boa-Viagem, and A. Ferraudo, “Modeling energy utilization and growth parameter description for broiler chickens,” Poultry Science, vol. 84, no. 9, pp. 1363–1369, 2005, doi: 10.1093/ps/84.9.1363.
[111] M. N. Omar, A. A. Samak, M. H. Keshek, and S. F. Elsisi, “Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy,” Renewable Energy, vol. 159, pp. 920–928, 2020, doi: 10.1016/j.renene.2020.06.049.