Structural strength evaluation of a modular toddler bicycle: Frame design and material considerations for children’s progressive development
Main Article Content
Abstract
The toddler bicycle is essential for promoting gross motor skills in early childhood development, but its usability is often limited by fixed dimensions that do not accommodate a child’s growth. This study explores the concept of modular transformability, which allows the bicycle frame to adapt to different developmental stages, enhancing functionality and supporting sustainability through reduced waste and extended usability. As children grow, their increasing weight demands a robust structural design to ensure both safety and performance. The structural strength and stability of a modular toddler bicycle frame are evaluated using numerical simulations under static loading conditions. Various frame designs and material options are analyzed for displacements and stresses, optimizing performance while maintaining safety. The findings offer insights for improving bicycle frame design and align with a circular design philosophy that prioritizes durability, adaptability, and environmental sustainability.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] D. F. Zuhroh, “Edukasi dan pemantauan perkembangan anak melalui metode denver developmental screening test,” Pengabdian Masyarakat Cendekia (PMC), vol. 3, no. 1, pp. 11–14, Jan. 2024, doi: 10.55426/pmc.v3i1.277.
[3] P. van Loon, D. Diener, and S. Harris, “Circular products and business models and environmental impact reductions: Current knowledge and knowledge gaps,” Journal of Cleaner Production, vol. 288, p. 125627, Mar. 2021, doi: 10.1016/j.jclepro.2020.125627.
[4] A. Córdoba-Roldán, A. M. Martín-Gómez, M. Rodríguez-Núñez, and J. R. Lama-Ruiz, “An Evolutionary Modular Product Development Under Circular Economy Approach,” Sustainability, vol. 16, no. 23, p. 10688, Dec. 2024, doi: 10.3390/su162310688.
[5] X. Guangnian, L. Qiongwen, N. Anning, and C. Zhang, “Research on carbon emissions of public bikes based on the life cycle theory,” Transportation Letters, vol. 15, no. 4, pp. 278–295, Apr. 2023, doi: 10.1080/19427867.2022.2123142.
[6] T. A. Branca et al., “Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe,” Metals, vol. 10, no. 3, p. 345, Mar. 2020, doi: 10.3390/met10030345.
[7] L. H. R. H. Zeuwts, F. J. A. Deconinck, P. Vansteenkiste, G. Cardon, and M. Lenoir, “Understanding the development of bicycling skills in children: A systematic review,” Safety Science, vol. 123, p. 104562, Mar. 2020, doi: 10.1016/j.ssci.2019.104562.
[8] G. C. C. Chow and S. C. W. Ha, “Positive skill transfer in balance and speed control from balance bike to pedal bike in adults: A multiphase intervention study,” PLOS ONE, vol. 19, no. 2, p. e0298142, Feb. 2024, doi: 10.1371/journal.pone.0298142.
[9] C. Mercê, M. Branco, D. Catela, F. Lopes, and R. Cordovil, “Learning to Cycle: From Training Wheels to Balance Bike,” International Journal of Environmental Research and Public Health, vol. 19, no. 3, p. 1814, Feb. 2022, doi: 10.3390/ijerph19031814.
[10] A. Shim, W. Davis, D. Newman, B. Abbey, and J. Garafalo-Peterson, “The Effects of a Pedal-less Bicycle Intervention on Stability Scores among Preschool Aged Children,” Journal of Motor Behavior, vol. 53, no. 2, pp. 185–190, Mar. 2021, doi: 10.1080/00222895.2020.1748859.
[11] B. Blommenstein and J. van der Kamp, “Mastering balance: The use of balance bicycles promotes the development of independent cycling,” British Journal of Developmental Psychology, vol. 40, no. 2, pp. 242–253, Jun. 2022, doi: 10.1111/bjdp.12409.
[12] C. W. Babbitt, S. Althaf, F. Cruz Rios, M. M. Bilec, and T. E. Graedel, “The role of design in circular economy solutions for critical materials,” One Earth, vol. 4, no. 3, pp. 353–362, Mar. 2021, doi: 10.1016/j.oneear.2021.02.014.
[13] O. C. . T. Zienkiewicz R. L.; Zhu, J. Z., The Finite Element Method: its Basis and Fundamentals. Elsevier, 2013. doi: 10.1016/C2009-0-24909-9.
[14] D. W. Karmiadji et al., “Verification of urban light rail transit (LRT) bogie frame structure design lifetime under variable fatigue loads,” Mechanical Engineering for Society and Industry, vol. 2, no. 1, pp. 42–53, Apr. 2022, doi: 10.31603/mesi.6938.
[15] K. Sung, “Understanding upcycling and circular economy and their interrelationships through literature review for design education,” Proceedings of the Design Society, vol. 3, pp. 3721–3730, Jul. 2023, doi: 10.1017/pds.2023.373.
[16] T. Brown and J. Wyatt, “Design Thinking for Social Innovation,” Development Outreach, vol. 12, no. 1, pp. 29–43, Jul. 2010, doi: 10.1596/1020-797X_12_1_29.
[17] J. Yin et al., “Research on Lightweight Rail Vehicle Body Based on Sensitivity Analysis,” Journal of Engineering and Technological Sciences, vol. 56, no. 3, pp. 353–366, Jun. 2024, doi: 10.5614/j.eng.technol.sci.2024.56.3.4.
[18] K. Khutal, G. Kathiresan, K. Ashok, B. Simhachalam, and D. Davidson Jebaseelan, “Design Validation Methodology for Bicycle Frames Using Finite Element Analysis,” Materials Today: Proceedings, vol. 22, pp. 1861–1869, 2020, doi: 10.1016/j.matpr.2020.03.085.
[19] C.-C. Lin, S.-J. Huang, and C.-C. Liu, “Structural analysis and optimization of bicycle frame designs,” Advances in Mechanical Engineering, vol. 9, no. 12, p. 168781401773951, Dec. 2017, doi: 10.1177/1687814017739513.
[20] A. Syehan, A. T. Pamungkas, and D. A. Sumarsono, “Static Simulation of E-Bike Tilting Three-Wheeled Frame Structure using The Finite Element Method,” IOP Conference Series: Materials Science and Engineering, vol. 494, no. 1, p. 012088, Mar. 2019, doi: 10.1088/1757-899X/494/1/012088.
[21] D. Covill, S. Begg, E. Elton, M. Milne, R. Morris, and T. Katz, “Parametric Finite Element Analysis of Bicycle Frame Geometries,” Procedia Engineering, vol. 72, pp. 441–446, 2014, doi: 10.1016/j.proeng.2014.06.077.
[22] S. F. Abdulqadir, B. H. Alaseel, and J. O. Sameer, “Comparison of the Mechanical Properties and Approach to Numerical Modeling of Fiber-reinforced Composite, High-Strength Steel and Aluminum,” Journal of Engineering and Technological Sciences, vol. 56, no. 1, pp. 110–124, Feb. 2024, doi: 10.5614/j.eng.technol.sci.2023.56.1.9.
[23] T. Tomaszewski, “Fatigue life analysis of steel bicycle frame according to ISO 4210,” Engineering Failure Analysis, vol. 122, p. 105195, Apr. 2021, doi: 10.1016/j.engfailanal.2020.105195.
[24] B. . et al. Haryanto, “Verification of a new prototype design of bogie monorail frame with variation of static loading,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 78–85, 2023, doi: 10.31603/mesi.9905.
[25] W. Zhou, Z. Shao, J. Yu, and J. Lin, “Advances and Trends in Forming Curved Extrusion Profiles,” Materials, vol. 14, no. 7, p. 1603, Mar. 2021, doi: 10.3390/ma14071603.
[26] J. R. . A. S. M. I. H. C. Davis, Metals Handbook Desk Edition 2nd Edition. Taylor & Francis, 1998.
[27] Sourav, A. Sharma, and M. Pandey, “Material Selection and Analysis of Bicycle Frame,” in Lecture Notes in Electrical Engineering, J. . K. Singh S.; Choudhury, U., Ed., Springer, 2021, pp. 771–780. doi: 10.1007/978-981-16-4149-7_71.
[28] I. Muhlisin and N. Feblidiyanti, “Comparison of strength and stability of bicycle frames made from 6061-T6 Aluminum (SS) and Commercially Pure CP-Ti UNS R50700 Grade 4 (SS) materials,” Teknika: Jurnal Sains dan Teknologi, vol. 20, no. 1, pp. 132–140, 2024, doi: 10.62870/tjst.v20i1.24163.
[29] C. Rontescu, T. D. Cicic, C. G. Amza, O. Chivu, and D. Dobrotă, “Choosing the optimum material for making a bicycle frame,” Metalurgija, vol. 54, no. 4, pp. 679–682, 2015.
[30] W. H. Tan, M. Ashraf, L. E. Ooi, and J. Niresh, “Static and Dynamics Analysis of Bicycle Frame,” Journal of Physics: Conference Series, vol. 2051, no. 1, p. 012032, Oct. 2021, doi: 10.1088/1742-6596/2051/1/012032.
[31] H. Wibowo, Mujiyono, R. Asnawi, F. Arifin, and Tafakur, “Finite element simulation of A356 and A6061 aluminum combination bicycle elements to optimize weight of frame,” in AIP Conference Proceedings, 2023, p. 050001. doi: 10.1063/5.0116044.
[32] A. Jusuf et al., “Design Exploration and Optimization of a Multi-Corner Crash Box under Axial Loading via Gaussian Process Regression,” International Journal of Technology, vol. 15, no. 6, p. 1749, Dec. 2024, doi: 10.14716/ijtech.v15i6.7278.
[33] M. A. Mahendra and R. Dharmastiti, “Pengembangan desain sepeda anak usia 7-12 tahun menggunakan metode rapid ethnography dan scamper,” ATRIUM: Jurnal Arsitektur, vol. 6, no. 2, pp. 73–79, Nov. 2020, doi: 10.21460/atrium.v6i2.116.
[34] X. Wu, T. Qiu, and H. Chen, “Function combined method for design innovation of children’s bike,” Chinese Journal of Mechanical Engineering, vol. 26, no. 2, pp. 242–247, Mar. 2013, doi: 10.3901/CJME.2013.02.242.
[35] A. Akhyar, H. Husaini, I. Hasanuddin, and F. Ahmad, “Structural Simulations of Bicycle Frame Behaviour under Various Load Conditions,” Materials Science Forum, vol. 961, pp. 137–147, Jul. 2019, doi: 10.4028/www.scientific.net/MSF.961.137.