Alternative fuels for transportation sector in Indonesia

Main Article Content

Muji Setiyo
https://orcid.org/0000-0002-6582-5340

Abstract

Only a few countries in the world have rich energy resources like Indonesia which owns practically all-natural energy resources, including biological resources. Japan, a country renowned for its technological advancements, lacks sufficient land to cultivate crops used as raw materials for biofuels. Several countries near the north pole, do not expose to sunlight throughout the year like Indonesia, which impacted to development of solar energy to provide electricity. Therefore, this short article reviews the three main energy sources available in Indonesia for the transportation sector, which include: natural gas and coal as new energy sources; natural energy for electricity and hydrogen supply, and energy from biological sources.

Downloads

Download data is not yet available.

Article Details

Section
Editorial
Author Biography

Muji Setiyo, Universitas Muhammadiyah Magelang, Indonesia

Academic profile: ScopusORCIDGoogle ScholarResearchGateLinkedInPublonsSinta

References

[1] BP, “Statistical Review of World Energy globally consistent data on world energy markets . and authoritative publications in the field of energy,” BP Energy Outlook 2021, vol. 70, pp. 8–20, 2021.
[2] E. L. Clark, “Coal as a source of automotive fuels,” in Future Automotive Fuels, Springer, 1977, pp. 125–135.
[3] U. G. Akpan, A. A. Alhakim, and U. J. J. Ijah, “Production of ethanol fuel from organic and food wastes,” Leonardo Electronic Journal of Practices and Technologies, vol. 7, no. 13, pp. 001–011, 2008.
[4] I. K. Adam, A. Galadima, and A. I. Muhammad, “Biofuels in the Quest for Sustainable Energy Development,” Journal of Sustainable Development, vol. 4, no. 3, pp. 10–19, 2011, doi: 10.5539/jsd.v4n3p10.
[5] H. Carlsson and P. Fenton, “BioEthanol for Sustainable Transport - Results and recommendations from the European Best project,” Stockholm, 2010. doi: 10.13140/RG.2.1.4262.3442.
[6] IEA, “World Energy Outlook 2015,” Paris, 2015. doi: 10.1787/weo-2014-en.
[7] S. Sorrell, J. Speirs, R. Bentley, A. Brandt, and R. Miller, “Global Oil Depletion: An Assessment of the Evidence for a Near-term Peak in Global Oil Production,” London, 2009.
[8] Kementerian ESDM, “Ini Dia Sebaran Pembangkit Listrik Panas Bumi di Indonesia,” 2018. https://www.esdm.go.id/id/media-center/arsip-berita/ini-dia-sebaran-pembangkit-listrik-panas-bumi-di-indonesia#:~:text=JAKARTA - Sumber daya energi panas,panas bumi terbesar di dunia. (accessed Jan. 21, 2022).
[9] P3TEK, “Peta Potensi Energi Hidro Indonesia 2020,” 2021. https://p3tkebt.esdm.go.id/news-center/arsip-berita/peta-potensi-energi-hidro-indonesia-2020 (accessed Jan. 21, 2022).
[10] Kementerian ESDM, “Matahari Untuk PLTS di Indonesia,” 2012. https://www.esdm.go.id/id/media-center/arsip-berita/matahari-untuk-plts-di-indonesia (accessed Jan. 21, 2022).
[11] Kementerian ESDM, “Peta Potensi Energi Angin Indonesia dan Buku Integration of Wind Energy in Power Systems Diluncurkan,” 2017. https://www.esdm.go.id/en/media-center/news-archives/peta-potensi-energi-angin-indonesia-dan-buku-integration-of-wind-energy-in-power-systems-diluncurkan (accessed Jan. 21, 2022).
[12] Kementerian ESDM, “Tinjau Lokasi Pembangunan Pembangkit Arus Laut di Selat Larantuka, Menteri ESDM: Pertama di Indonesia, Terbesar di Dunia,” 2018. https://www.esdm.go.id/en/media-center/news-archives/tinjau-lokasi-pembangunan-pembangkit-arus-laut-di-selat-larantuka-menteri-esdm-pertama-di-indonesia-terbesar-di-dunia (accessed Jan. 23, 2022).
[13] A. Rahmanulloh, “Indonesia Biofuels Annual Report 2019,” Jakarta, 2019.
[14] F. Harahap, S. Silveira, and D. Khatiwada, “Cost competitiveness of palm oil biodiesel production in Indonesia,” Energy, vol. 170, pp. 62–72, 2019, doi: https://doi.org/10.1016/j.energy.2018.12.115.
[15] K. Siregar, A. H. Tambunan, A. K. Irwanto, S. S. Wirawan, and T. Araki, “A Comparison of Life Cycle Assessment on Oil Palm (Elaeis guineensis Jacq.) and Physic Nut (Jatropha curcas Linn.) as Feedstock for Biodiesel Production in Indonesia,” Energy Procedia, vol. 65, pp. 170–179, 2015, doi: https://doi.org/10.1016/j.egypro.2015.01.054.
[16] H. Kamahara et al., “Improvement potential for net energy balance of biodiesel derived from palm oil: A case study from Indonesian practice,” Biomass and Bioenergy, vol. 34, no. 12, pp. 1818–1824, 2010, doi: https://doi.org/10.1016/j.biombioe.2010.07.014.
[17] A. S. Silitonga, A. E. Atabani, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and S. Mekhilef, “A review on prospect of Jatropha curcas for biodiesel in Indonesia,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3733–3756, 2011, doi: https://doi.org/10.1016/j.rser.2011.07.011.
[18] M. H. Jayed, H. H. Masjuki, M. A. Kalam, T. M. I. Mahlia, M. Husnawan, and A. M. Liaquat, “Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 220–235, 2011, doi: https://doi.org/10.1016/j.rser.2010.09.002.
[19] N. Indrawan et al., “Palm biodiesel prospect in the Indonesian power sector,” Environmental Technology & Innovation, vol. 7, pp. 110–127, 2017, doi: https://doi.org/10.1016/j.eti.2017.01.001.
[20] R. Rosid, B. Sudarmanta, L. Atmaja, and S. Özer, “An Experimental Study of the Addition of Air Mass Flow Rate Using a 30% Emulsion-Fueled Diesel Engine at High Load,” Automotive Experiences, vol. 3, no. 2, 2020.
[21] E. Marlina, M. Basjir, M. Ichiyanagi, T. Suzuki, G. J. Gotama, and W. Anggono, “The Role of Eucalyptus Oil in Crude Palm Oil As Biodiesel Fuel,” Automotive Experiences, vol. 3, no. 1, pp. 33–38, 2020.
[22] D. Ayu, R. Aulyana, E. W. Astuti, K. Kusmiyati, and N. Hidayati, “Catalytic Transesterification of Used Cooking Oil to Biodiesel: Effect of Oil-Methanol Molar Ratio and Reaction Time,” Automotive Experiences, vol. 2, no. 3, pp. 73–77, 2019, doi: 10.31603/ae.v2i3.2991.
[23] H. Y. Nanlohy, H. Riupassa, I. M. Rasta, and M. Yamaguchi, “An Experimental Study on the Ignition Behavior of Blended Fuels Droplets with Crude Coconut Oil and Liquid Metal Catalyst,” Automotive Experiences, vol. 3, no. 2, 2020.
[24] H. Y. Nanlohy, I. N. G. Wardana, M. Yamaguchi, and T. Ueda, “The role of rhodium sulfate on the bond angles of triglyceride molecules and their effect on the combustion characteristics of crude jatropha oil droplets,” Fuel, vol. 279, p. 118373, 2020, doi: https://doi.org/10.1016/j.fuel.2020.118373.
[25] A. C. Arifin, A. Aminudin, and R. M. Putra, “Diesel-Biodiesel Blend on Engine Performance: An Experimental Study,” Automotive Experiences, vol. 2, no. 3, pp. 91–96, 2019, doi: 10.31603/ae.v2i3.2995.
[26] M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 533–549, 2016, doi: https://doi.org/10.1016/j.rser.2015.10.037.
[27] P. A. Handayani, A. Abdullah, and H. Hadiyanto, “Biodiesel production from Nyamplung (Calophyllum inophyllum) oil using ionic liquid as a catalyst and microwave heating system,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 12, no. 2, pp. 293–298, 2017.
[28] M. Fadhlullah, S. N. B. Widiyanto, and E. Restiawaty, “The potential of nyamplung (Calophyllum inophyllum L.) seed oil as biodiesel feedstock: Effect of seed moisture content and particle size on oil yield,” Energy Procedia, vol. 68, no. 2015, pp. 177–185, 2015.
[29] S. Supriyadi and P. Purwanto, “Enhancing biodiesel from kemiri sunan oil manufacturing using ultrasonics,” in E3S Web of Conferences, 2018, vol. 31, p. 2014.
[30] W. S. Wulandari, D. Darusman, and W. Cecep Kusmana, “Land suitability analysis of biodiesel crop Kemiri Sunan (Reutealis trisperma (Blanco) Airy Shaw) in the Province of West Java, Indonesia,” J. Environ. Earth Sci, vol. 4, no. 21, pp. 27–37, 2014.
[31] N. A. Fauzan, E. S. Tan, F. L. Pua, and G. Muthaiyah, “Physiochemical properties evaluation of Calophyllum inophyllum biodiesel for gas turbine application,” South African Journal of Chemical Engineering, vol. 32, pp. 56–61, 2020, doi: https://doi.org/10.1016/j.sajce.2020.02.001.
[32] A. S. Silitonga, H. H. Masjuki, H. C. Ong, T. Yusaf, F. Kusumo, and T. M. I. Mahlia, “Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study,” Industrial Crops and Products, vol. 85, pp. 274–286, 2016, doi: https://doi.org/10.1016/j.indcrop.2016.03.017.
[33] B. C. Purnomo, S. Munahar, Z. B. Pambuko, and H. Nasrullah, “Biodiesel Research Progress in Indonesia : Data from Science and Technology Index ( Sinta ),” Technology Reports of Kansai University, vol. 62, no. 06, pp. 45–52, 2020.
[34] M. Setiyo, D. Yuvenda, and O. D. Samuel, “The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis,” Indonesian Journal of Science and Technology, vol. 6, no. 3, pp. 469–490, 2021, doi: 10.17509/ijost.v6i3.38430.
[35] A. Kolakoti, M. Setiyo, and B. Waluyo, “Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization,” Mechanical Engineering for Society and Industry, vol. 1, no. 1, pp. 22–30, 2021, doi: 10.31603/mesi.5320.
[36] A. Kolakoti, B. Prasadarao, K. Satyanarayana, M. Setiyo, H. Köten, and M. Raghu, “Elemental, Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN),” Automotive Experiences, vol. 5, no. 1, pp. 3–15, 2022.
[37] N. N. Clark, D. L. McKain, T. Klein, and T. S. Higgins, “Quantification of gasoline-ethanol blend emissions effects,” Journal of the Air & Waste Management Association, vol. 71, no. 1, pp. 3–22, Jan. 2021, doi: 10.1080/10962247.2020.1754964.
[38] M. K. Mohammed, H. H. Balla, Z. M. H. Al-Dulaimi, Z. S. Kareem, and M. S. Al-Zuhairy, “Effect of ethanol-gasoline blends on SI engine performance and emissions,” Case Studies in Thermal Engineering, vol. 25, no. May 2020, p. 100891, 2021, doi: 10.1016/j.csite.2021.100891.
[39] I. E. A. ETSAP, “Ethanol Internal Combustion Engines,” Technology Brief T06, no. June, pp. 1–6, 2010.