Development of magnesium biocomposites with hydroxyapatite or carbonate apatite reinforcement as implant candidates: A review

Main Article Content

Yusuf Subagyo
Baharudin Priwintoko
Rifky Ismail
https://orcid.org/0000-0003-0445-3405
Deni Fajar Fitriyana
https://orcid.org/0000-0002-5287-6122
I Nyoman Jujur
https://orcid.org/0000-0001-6590-8798
Iwan Setyadi
https://orcid.org/0000-0003-0128-4159
Galih Taqwatomo
https://orcid.org/0009-0007-2827-8281

Abstract

Metal materials used as bone implants are not new today. In fact, almost 70% of implant materials are made of metal. Magnesium biocomposites with Carbonate Apatite or Hydroxyapatite reinforcements have promising potential as implants, one of the properties of these composites is biocompatible and bioactive to accelerate bone growth. There have been many studies on the development of Mg-CAp and Mg-HAp as biocomposite implant materials. Various methods of making these biocomposites have been carried out, such as sintering, microwave, coating, casting, and extrusion. From the fabrication process, observations were made regarding mechanical properties and chemical structure. The results show that CAp and HAp can suppress the corrosion rate of Magnesium, which is one of the weak properties that must be improved. Then it can increase the biological activity of Mg composites and has the ability of bone induction and bone conduction. In addition, the mechanical properties have increased in tensile, compression, and microhardness testing. However, so far, the research on Mg-HAp and Mg-CAp has only been limited to animal testing and has not been applied to humans. So, the potential for development and research is still open actually to be implemented in the orthopedic field.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

[1] M. U. A. Khan, S. I. A. Razak, M. N. M. Ansari, R. M. Zulkifli, N. Ahmad Zawawi, and M. Arshad, “Development of biodegradable bio-based composite for bone tissue engineering: Synthesis, characterization and in vitro biocompatible evaluation,” Polymers, vol. 13, no. 21, 2021, doi: 10.3390/polym13213611.
[2] M. Rahmati, E. A. Silva, J. E. Reseland, C. A. Heyward, and H. J. Haugen, “Biological responses to physicochemical properties of biomaterial surface,” Chemical Society Reviews, vol. 49, no. 15, pp. 5178–5224, 2020, doi: 10.1039/d0cs00103a.
[3] X. Xue, Y. Hu, Y. Deng, and J. Su, “Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering,” Advanced Functional Materials, vol. 31, no. 19, pp. 1–20, 2021, doi: 10.1002/adfm.202009432.
[4] Y. Zhu, C. Goh, and A. Shrestha, “Biomaterial Properties Modulating Bone Regeneration,” Macromolecular Bioscience, vol. 21, no. 4, pp. 1–12, 2021, doi: 10.1002/mabi.202000365.
[5] S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, and K. H. Kim, “Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects,” Materials Science and Engineering C, vol. 106, no. May 2019, p. 110154, 2020, doi: 10.1016/j.msec.2019.110154.
[6] X. Gao, M. Fraulob, and G. Haïat, “Biomechanical behaviours of the bone-implant interface: A review,” Journal of the Royal Society Interface, vol. 16, no. 156, 2019, doi: 10.1098/rsif.2019.0259.
[7] A. Skorulska, P. Piszko, Z. Rybak, M. Szymonowicz, and M. D. ´nski, “Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry—Application, Mechanical Characteristics and Comparison,” materials, vol. 14, no. 1592, pp. 1–21, 2021, doi: doi.org/10.3390/ma14071592.
[8] P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” Journal of Drug Delivery Science and Technology, vol. 53, no. June, p. 101174, 2019, doi: 10.1016/j.jddst.2019.101174.
[9] A. Mussatto, I. U. I. Ahad, R. T. Mousavian, Y. Delaure, and D. Brabazon, “Advanced production routes for metal matrix composites,” Engineering Reports, vol. 3, no. 5, pp. 1–25, 2021, doi: 10.1002/eng2.12330.
[10] A. D. Valino et al., “Progress in Polymer Science Advances in 3D printing of thermoplastic polymer composites and nanocomposites,” Progress in Polymer Science, vol. 98, p. 101162, 2019, doi: 10.1016/j.progpolymsci.2019.101162.
[11] F. Mahyudin and H. Suroto, “Tissue bank and tissue engineering,” in Biomaterials and Medical Devices: A Perspective from an Emerging Country, Springer, 2016, pp. 207–234.
[12] V. Tsakiris, C. Tardei, and F. M. Clicinschi, “Biodegradable Mg alloys for orthopedic implants – A review,” Journal of Magnesium and Alloys, vol. 9, no. 6, pp. 1884–1905, 2021, doi: 10.1016/j.jma.2021.06.024.
[13] J.-F. Zhang et al., “Synergistic catalytic mechanism of acidic silanol and basic alkylamine bifunctional groups over SBA-15 zeolite toward aldol condensation,” The Journal of Physical Chemistry C, vol. 123, no. 8, pp. 4903–4913, 2019, doi: 10.1021/acs.jpcc.8b11941.
[14] M. Kaur and K. Singh, “Review on titanium and titanium based alloys as biomaterials for orthopaedic applications,” Materials Science and Engineering C, vol. 102, no. April, pp. 844–862, 2019, doi: 10.1016/j.msec.2019.04.064.
[15] J. Jakubowicz, “Ti-based biomaterials: synthesis, properties and applications,” Materials, vol. 13, no. 7. MDPI, p. 1696, 2020.
[16] V. K. Bommala, M. G. Krishna, and C. T. Rao, “Magnesium matrix composites for biomedical applications: A review,” Journal of Magnesium and Alloys, vol. 7, no. 1, pp. 72–79, 2019, doi: 10.1016/j.jma.2018.11.001.
[17] A. Alafaghani, A. Qattawi, and M. A. G. Castañón, “Effect of manufacturing parameters on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals,” The International Journal of Advanced Manufacturing Technology, vol. 99, pp. 2491–2507, 2018, doi: 10.1007/s00170-018-2586-5.
[18] D. M. Ramos, R. Dhandapani, A. Subramanian, S. Sethuraman, and S. G. Kumbar, “Clinical complications of biodegradable screws for ligament injuries,” Materials Science and Engineering: C, vol. 109, p. 110423, 2020, doi: 10.1016/j.msec.2019.110423.
[19] I. Baltatu, A. V. Sandu, M. D. Vlad, M. C. Spataru, P. Vizureanu, and M. S. Baltatu, “Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloys,” Micromachines, vol. 13, no. 3, 2022, doi: 10.3390/mi13030430.
[20] A. Pandey, A. Awasthi, and K. K. Saxena, “Metallic implants with properties and latest production techniques: a review,” Advances in Materials and Processing Technologies, vol. 6, no. 2, pp. 167–202, 2020, doi: 10.1080/2374068X.2020.1731236.
[21] A. A. Zadpoor, “Mechanical performance of additively manufactured meta-biomaterials,” Acta Biomaterialia, vol. 85, pp. 41–59, 2019, doi: 10.1016/j.actbio.2018.12.038.
[22] G. Renganathan, N. Tanneru, and S. L. Madurai, Orthopedical and biomedical applications of titanium and zirconium metals. Elsevier Ltd, 2018.
[23] K. Moghadasi et al., “A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties,” Journal of Materials Research and Technology, vol. 17, pp. 1054–1121, 2022, doi: 10.1016/j.jmrt.2022.01.050.
[24] T. V. Basova, E. S. Vikulova, S. I. Dorovskikh, A. Hassan, and N. B. Morozova, “The use of noble metal coatings and nanoparticles for the modification of medical implant materials,” Materials and Design, vol. 204, p. 109672, 2021, doi: 10.1016/j.matdes.2021.109672.
[25] J. M. Aarts, J. J. E. Choi, S. Metcalfe, and V. Bennani, “Influence of build angulation on the mechanical properties of a direct-metal laser-sintered cobalt-chromium used for removable partial denture frameworks,” Journal of Prosthetic Dentistry, vol. 126, no. 2, pp. 224–230, 2021, doi: 10.1016/j.prosdent.2020.06.014.
[26] J. Li et al., “Materials evolution of bone plates for internal fixation of bone fractures: A review,” Journal of Materials Science and Technology, vol. 36, pp. 190–208, 2020, doi: 10.1016/j.jmst.2019.07.024.
[27] S. Paul et al., “New Mg-Ca-Zn amorphous alloys: Biocompatibility, wettability and mechanical properties,” Materialia, vol. 12, no. February, 2020, doi: 10.1016/j.mtla.2020.100799.
[28] I. Sukmana, A. Hermanto, and Y. Burhanuddin., “Aplikasi Logam Magnesium dan Paduannya Sebagai Material Baut Tulang Mampu Luruh,” in Proceeding Seminar Nasional Tahunan Teknik Mesin XV, 2016, vol. 147, no. March, pp. 727–732.
[29] Y. F. Zheng, X. N. Gu, and F. Witte, “Biodegradable metals,” Materials Science and Engineering R: Reports, vol. 77, pp. 1–34, 2014, doi: 10.1016/j.mser.2014.01.001.
[30] A. J. Rahyussalim, S. Supriadi, A. F. Kamal, A. F. Marsetio, and P. M. Pribadi, “Magnesium-Carbonate Apatite metal composite: Potential biodegradable material for orthopaedic implant,” AIP Conference Proceedings, vol. 2092, no. April, 2019, doi: 10.1063/1.5096689.
[31] R. Rizzoli, E. Biver, and T. C. Brennan-Speranza, “Nutritional intake and bone health,” The Lancet Diabetes and Endocrinology, vol. 9, no. 9, pp. 606–621, 2021, doi: 10.1016/S2213-8587(21)00119-4.
[32] A. Muñoz-garach and B. Garc, “Nutrients and Dietary Patterns Related to Osteoporosis,” Nutrients, vol. 12, no. 7, pp. 1–16, 2020, doi: 10.3390/nu12071986.
[33] J. Tan and S. Ramakrishna, “Applications of Magnesium and Its Alloys : A Review,” Applied Sciences, vol. 11, no. 15, 2021, doi: 10.3390/app11156861.
[34] I. Setyadi, A. F. Marsetio, A. F. Kamal, Rahyussalim, S. Supriadi, and B. Suharno, “Microstructure and microhardness of Carbonate Apatite particle-reinforced Mg composite consolidated by warm compaction for biodegradable implant application,” Materials Research Express, vol. 7, no. 5, 2020, doi: 10.1088/2053-1591/ab7d70.
[35] I. Ielo, G. Calabrese, G. De Luca, and S. Conoci, “Recent advances in Hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics,” International Journal of Molecular Sciences, vol. 23, no. 17, p. 9721, 2022, doi: 10.3390/ijms23179721.
[36] M. Sari, P. Hening, Chotimah, I. D. Ana, and Y. Yusuf, “Bioceramic Hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering,” Biomaterials research, vol. 25, pp. 1–13, 2021, doi: 10.1186/s40824-021-00203-z.
[37] M. Drahanský, “Liveness detection in biometrics,” in Advanced Biometric Technologies, InTech, 2011, pp. 179–198.
[38] S. Okabayashi et al., “Hydroxyapatite fiber material for bone tissue engineering,” Journal of Oral Tissue Engineering, vol. 6, no. 3, pp. 180–188, 2009, doi: 10.11223/jarde.6.180.
[39] B. Leukers et al., “Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 12, pp. 1121–1124, 2005, doi: 10.1007/s10856-005-4716-5.
[40] B. Poojar, B. Ommurugan, S. Adiga, and H. Thomas, “Evaluation of antiurolithiatic property of ethanolic extract of fennel seeds in male wistar albino rats,” Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 8, 2017, doi: 10.22159/ajpcr.2017.v10i8.18923.
[41] Q. U. Ain, A. N. Khan, M. Nabavinia, and M. Mujahid, “Enhanced mechanical properties and biocompatibility of novel Hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications,” Materials Science and Engineering: C, vol. 75, pp. 807–815, 2017, doi: 10.1016/j.msec.2017.02.117.
[42] A. Kumar, K. Biswas, and B. Basu, “Hydroxyapatite‐titanium bulk composites for bone tissue engineering applications,” Journal of Biomedical Materials Research Part A, vol. 103, no. 2, pp. 791–806, 2015, doi: 10.1007/978-981-10-3017-8_2.
[43] N. T. B. Linh, D. Mondal, and B. T. Lee, “In vitro study of CaTiO3–Hydroxyapatite composites for bone tissue engineering,” Asaio Journal, vol. 60, no. 6, pp. 722–729, 2014, doi: 10.1097/MAT.0000000000000126.
[44] O. Suciu, T. Ioanovici, and L. Bereteu, “Mechanical properties of Hydroxyapatite doped with magnesium, used in bone implants,” Applied Mechanics and Materials, vol. 430, pp. 222–229, 2013, doi: 10.4028/www.scientific.net/AMM.430.222.
[45] L. Linsheng, L. Guoxiang, and L. Lihui, “Research on the preparation, biocompatibility and bioactivity of magnesium matrix Hydroxyapatite composite material,” Bio-Medical Materials and Engineering, vol. 27, no. 2–3, pp. 251–258, 2016, doi: 10.3233/BME-161582.
[46] K. Ishikawa and K. Hayashi, “Carbonate Apatite artificial bone,” Science and Technology of Advanced Materials, vol. 22, no. 1, pp. 683–694, 2021, doi: 10.1080/14686996.2021.1947120.
[47] Y. Ayukawa, Y. Suzuki, K. Tsuru, K. Koyano, and K. Ishikawa, “Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling,” BioMed Research International, vol. 2015, no. 1, pp. 1–8, 2015, doi: 10.1155/2015/579541.
[48] M. Kanazawa, K. Tsuru, N. Fukuda, Y. Sakemi, Y. Nakashima, and K. Ishikawa, “Evaluation of Carbonate Apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects,” Journal of Materials Science: Materials in Medicine, vol. 28, pp. 1–11, 2017, doi: 10.1007/s10856-017-5896-5.
[49] S. Tjahajawati et al., “Matrix levels of metalloproteinase-2 (MMP-2) and toxicity evaluation of Carbonate Apatite-based endodontic sealer in rat subcutaneous implantation,” Heliyon, vol. 6, no. 7, p. e04330, 2020, doi: 10.1016/j.heliyon.2020.e04330.
[50] K. Ishikawa, “Carbonate Apatite bone replacement,” Handbook of Bioceramics and Biocomposites, vol. 127, pp. 213–232, 2016, doi: 10.1007/978-3-319-12460-5_8.
[51] N. Ahmad Agha, “Biodegradation Study of Magnesium-based Implant Materials under Physiological Conditions,” der Christian-Albrechts-Universität zu Kiel, 2016.
[52] M. Iafisco, A. Ruffini, A. Adamiano, S. Sprio, and A. Tampieri, “Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger,” Materials Science and Engineering: C, vol. 35, pp. 212–219, 2014, doi: 10.1016/j.msec.2013.11.009.
[53] A. J. Rahyussalim, S. Supriadi, A. F. Marsetio, P. M. Pribadi, and B. Suharno, “The potential of Carbonate Apatite as an alternative bone substitute material,” Medical Journal of Indonesia, vol. 28, no. 1, pp. 92–97, 2019, doi: 10.13181/mji.v28i1.2681.
[54] A. J. Rahyussalim et al., “Synthesis, Structural Characterization, Degradation Rate, and Biocompatibility of Magnesium-Carbonate Apatite (Mg-Co3Ap) Composite and Its Potential as Biodegradable Orthopaedic Implant Base Material,” Journal of Nanomaterials, vol. 2021, pp. 1–10, 2021, doi: 10.1155/2021/6615614.
[55] M. S. Sader, K. Lewis, G. A. Soares, and R. Z. LeGeros, “Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties,” Materials Research, vol. 16, pp. 779–784, 2013, doi: 10.1590/S1516-14392013005000046.
[56] S. Hiromoto, S. Itoh, N. Noda, T. Yamazaki, H. Katayama, and T. Akashi, “Osteoclast and osteoblast responsive Carbonate Apatite coatings for biodegradable magnesium alloys,” Science and Technology of Advanced Materials, vol. 21, no. 1, pp. 346–358, 2020, doi: 10.1080/14686996.2020.1761237.
[57] I. Setyadi, T. Sudiro, B. Hermanto, P. R. Oktari, and A. FAUZI, “Fabrication of Magnesium-Carbonate Apatite by Conventional Sintering and Spark Plasma Sintering for Orthopedic Implant Applications,” Sains Malaysiana, vol. 51, no. 3, pp. 883–894, 2022, doi: 10.17576/jsm-2022-5103-22.
[58] S. Adzila, S. Ramesh, and I. Sopyan, “Properties of magnesium doped nanocrystalline Hydroxyapatite synthesize by mechanochemical method,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 24, pp. 14097–14100, 2016.
[59] B. R. Sunil, C. Ganapathy, T. S. S. Kumar, and U. Chakkingal, “Processing and mechanical behavior of lamellar structured degradable magnesium–Hydroxyapatite implants,” Journal of the mechanical behavior of biomedical materials, vol. 40, pp. 178–189, 2014, doi: 10.1016/j.jmbbm.2014.08.016.
[60] S. Gupta, A. K. Sharma, D. Agrawal, M. T. Lanagan, E. Sikora, and I. Singh, “Characterization of AZ31/HA biodegradable metal matrix composites manufactured by rapid Microwave Sintering,” Materials, vol. 16, no. 5, p. 1905, 2023, doi: 10.3390/ma16051905.
[61] O. Kaygili, S. Keser, N. Bulut, and T. Ates, “Characterization of Mg-containing Hydroxyapatites synthesized by combustion method,” Physica B: Condensed Matter, vol. 537, pp. 63–67, 2018, doi: 10.1016/j.physb.2018.02.007.
[62] G. Xiong et al., “Characterization of biomedical Hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering,” Current Applied Physics, vol. 16, no. 8, pp. 830–836, 2016, doi: 10.1016/j.cap.2016.05.004.
[63] Q. H. Bao, C. Sun, C. Zhang, and J. Q. Zhang, “Dip coated magnesium-substituted Hydroxyapatite coatings on magnesium alloy for biomedical applications,” Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 25, pp. 83–89, 2015, doi: 10.4028/www.scientific.net/JBBBE.25.83.
[64] F. N. Hariowibowo and Y. W. Sari, “Synthesis of Magnesium-Hydroxyapatite Crystal via microwave irradiation,” in Journal of Physics: Conference Series, 2019, vol. 1248, no. 1, p. 12077, doi: 10.1088/1742-6596/1248/1/012077.

Most read articles by the same author(s)